CANDOR: Achieving rotational tolerances on a polychromatic neutron reflectometer

Nancy Hadad NIST Center for Neutron Research (NCNR)

Problem Statement and Status

- 4.5-meter-long, 3000 kg CANDOR detector arm rotating from -10° to 140° in relation to the beam line
 not meeting scientific angular tolerances of ±0.01°
- Josh Graybill (NCNR) presented status of this problem at DENIM 2019
- Where are we today?

Detector Arm Rotation Tolerances

Science requires more stringent tolerances

Before	Rotation of Detector Arm	Tolerance
	negative 10° to 10°	±.01°
	>10° to 140°	±.02°

After	Rotation of Detector Arm	Tolerance
	negative 10° to <0°	±.005°
	at 0° and at .4°	±.001°
	>0° to 10° (excluding .4°)	±.002°
	>10° to 20°	±.005°
	>20° to 140°	±.01°

Absolute Encoder Resolution - .0014°

Incremental Encoder Resolution - .0002° Motor Drive Micro-stepping Resolution - .0001°

CANDOR Detector Arm

Sample rotation Angle of detector rotation R = 3.2 Meter $(\pm .001^{\circ} = 0.1 \text{mm})$ Absolute Drive Motor with Laser Tracker on NST Center for Encoder Detector arm Incremental encoder **Neutron Research** Sample Stage

Status as of DENIM 2019

- Problem with positioning detector arm
 - Neither the incremental or absolute encoders matched the laser tracker angle
- What is wrong with the Absolute Encoder?

Missing Coupling on Absolute Enc.

Effects of Adding Coupling

Effects of Adding Coupling

Rotation of Detector Arm – 0-140-0°

- Lookup Table?
- Direction Reversal Are the outboard wheels aligned to the center of rotation?

More learned from science team

Encoder positions recorded during neutron scan show mismatch

Novel QR Code Reader Application

QR Code Reader

Matches Absolute Encoder

Observations and Possible Causes

Observations

- Detector arm positioning erratic
 - Not rotating smoothly with the drive motor
- Direction of rotation affects detector arm angle
- Possible Causes
 - Wheels not aligned on the axis of rotation
 - 2° of back driving in one direction does not fix this
 - Several small neutron scans at 0 degrees enable wheels to relax into a repeatable position after large arm rotations (data available upon request)
 - Faulty sprocket engagement with roller chain

Wheel alignment

Wheel alignment

Before & after wheel alignment

Note: Detector Arm Positioned by Drive Motor (not absolute encoder)

Center for

Neutron Research

Drive Motor Sprocket & Chain

Add 2 Sprocket Idlers

Detector Arm Repeatability – 10x better

Laser Tracker (0-10°) MINUS Laser Tracker (10-0°)

(not absolute encoder)

Future Plans

- Install and test a finer resolution absolute encoder for tighter scientific tolerances
- Fine tune the scaling factor applied to the drive motor to better match the laser tracker angle
- Use QR codes to provide absolute positioning at 0° and other angles (if necessary)

Thanks to the CANDOR Team

- Chuck Majkrzak
- 🥯 Brian Maranville
- Alex Grutter
- David Hoogerheide
- Nick Maliszewskyj
- Jeff Ziegler
- 🥯 Kevin Pritchard
- Peter Tsai

- George Baltic
- Don Pierce
- Dan Adler
- Ed Binkley
- Christoph Brocker
- Doug Johnson
- Doug Ogg
- Danny Ogg

And thanks for listening! Questions?

