

EUROPEAN SPALLATION SOURCE

ODIN:

Progress update for the preliminary design

DENIM 2015

Stewart Pullen Lead Instrument Engineer - ODIN

www.europeanspallationsource.se

September 9th, 2015

- Introduction to the ODIN instrument
- Partners how will they get involved
- Project lifecycle and phases
- What have we done so far
- What do we still need to do for TG2

EUROPEAN SPALLATION

SOURCE

Proposers

- M. Strobl, ESS, Sweden, and University of Copenhagen, Denmark.
- L. Udby, University of Copenhagen, Denmark.
- H. Carlsen, University of Copenhagen, Denmark.

Scientific Partners

- M. Schulz, Philipp Schmakat, B. Schillinger (TUM, DE)
- E. Lehmann, M. Morgano, B. Betz, C. Gruenzweig (PSI, CH)
- J. Plomp (TUD, NL)
- L. Udby, H. Carlsen (KU, DK)

Proposal at:

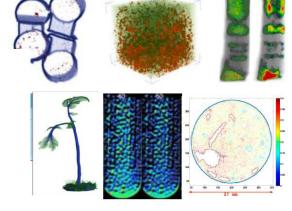
<u>https://europeanspallationsource.se/sites/default/files/odin_imaging_instrument_construction_propo</u> <u>sal.pdf</u>

Scientific case

Scientific Fields

- In energy research
- Magnetism and hard matter research
- Engineering materials
- Geology, earth and agricultural sciences
- Soft matter and biology
- Archaeology, Palaeontology, and Cultural heritage
- Alternative Energy and Environment
- Routine Non-Destructive Evaluation of Material Reliability

Fig. 1 scientific applications (from left to right) top: first visualization of magnetic domains (HZB), porosity distribution in casted AI specimen (HZB), crystalline phase distribution in martensitic steel sample (HZB), 3D Curie temperature map in NiPd crystal (HZB, TUM), sword artifact (HZB), plant root (PSI) and tomato seedling (HZB) from water uptake studies, hydrogen storage investigations (NIST), water distribution in soil around plant roots (PSI);


Scientific case

Scientific Fiel method/ application	wavelength band	wavelength resolution	max. FOV	max spatial resolution
Bragg edge/ strain mapping	1Å-5.5Å	0.3%	100x100mm2	<0.2mm
Bragg edge texture	1Å-5.5Å	1%	100x100mm2	<0.01mm
Bragg edge/ microstructure	2Å-6Å	10%	100x100mm2	<0.01mm
polarized neutrons/ magnetic phenomena	1Å-10(20)Å	1%	100x100mm2	<0.05mm
Dark-field contrast/ 2D SANS mapping	2Å-10(20)Å	10%	100x100mm2	<0.05mm
convetional imaging/ macroscop. structure	monochrom/cold thermal/bi-spec	10%/-/-/-	250x250 mm2	<0.001mm

Im left to right) top: first visualization of magnetic domains (HZB), I specimen (HZB), crystalline phase distribution in martensitic steel ture map in NiPd crystal (HZB, TUM), sword artifact (HZB), plant root) from water uptake studies, hydrogen storage investigations (NIST), plant roots (PSI);

Table 1 Instrumental requirements for the realization and efficient application of different modalities needed with respect to the defined science case and in order to take full advantage of the source characteristics for neutron imaging (note: parameters for FOV and spatial resolution are currently considered maximum requirements, which are currently not necessarily used or considered in combination).

ODIN Requirements

High-level scientific requirements for the instrument (13.6.4)

- 1. Shall be capable of a direct spatial resolution down to $10 \mu m$ (3D).
- 2. Shall allow for time resolutions below 100ms in kinetic measurements.
- 3. Shall allow time resolutions of the order of 1 microsecond in stroboscopic mode.
- 4. Shall allow the measurement of sample areas of up to 25X25cm at once.
- 5. Shall allow the detection of contrast equivalent to 20 ppm H2 in steel.
- 6. Shall allow investigating macroscopic structural features of samples with attenuation thicknesses equivalent to xx cm steel.
- 7. Shall be able to detect lattice distortions of the order of 10 $\mu\epsilon.$

8. Should be able to detect and quantify structural features down to 10nm from dark-field scatter contrast imaging with direct spatial resolution of at least in the range of 1 mm.

9. Shall be able to characterise magnetic fields and structures with accuracy better than 1mT and field integrals up to xx mTm.

10. Should be able to provide complementary x-ray contrast with comparable spatial resolution (10µm) relatable to the neutron data with according accuracy.

- 11. Should be capable of visualising crystalline phases and grains with a 3D resolution of at least $100 \mu m$.
- 12. The System's design shall provide the space and flexibility necessary to host and drive future developments in the Neutron Imaging field.

ODIN Modalities

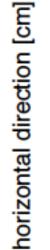
Modalities configurations include:

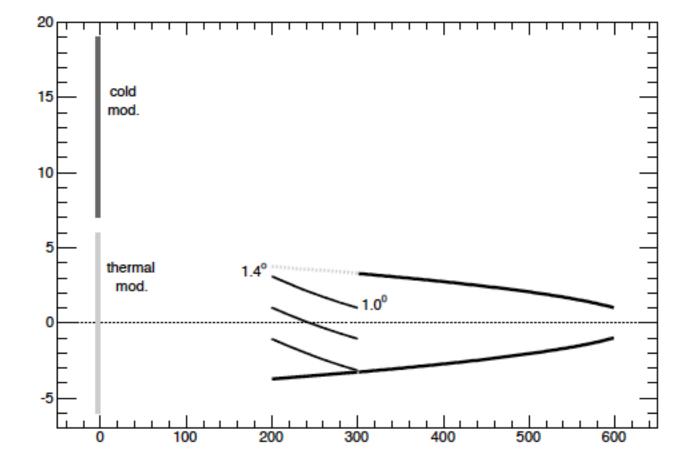
- I. "White beam" imaging with spectral choice
- II. Grating interferometer in LToFR

III. SEMSANS imaging in LToFR (Spin-echo modulation small angle neutron scattering)

- IV. Polarized and polarimetric neutron imaging set-up in MToFR
- V. Bragg-edge and diffraction geometry set-up in MToFR and HToFR
- VI. Perpendicular X-ray imaging set-up

- Multi purpose imaging instrument
- 50m Source to pinhole
- Sample located up to 14m from the pinhole
- Straight beam line (direct view of the source)
- Chopper cascade consisting of 9 axis (pulse 1 PPSc)
- Range of operational modes:
 - "White beam" imaging with spectral choice
 - Grating interferometer in LToFR
 - SEMSANS imaging in LToFR
 - Polarized and polarimetric neutron imaging set-up in MToFR
 - Bragg-edge and diffraction geometry set-up in MToFR and HToFR
 - Perpendicular X-ray imaging set-up

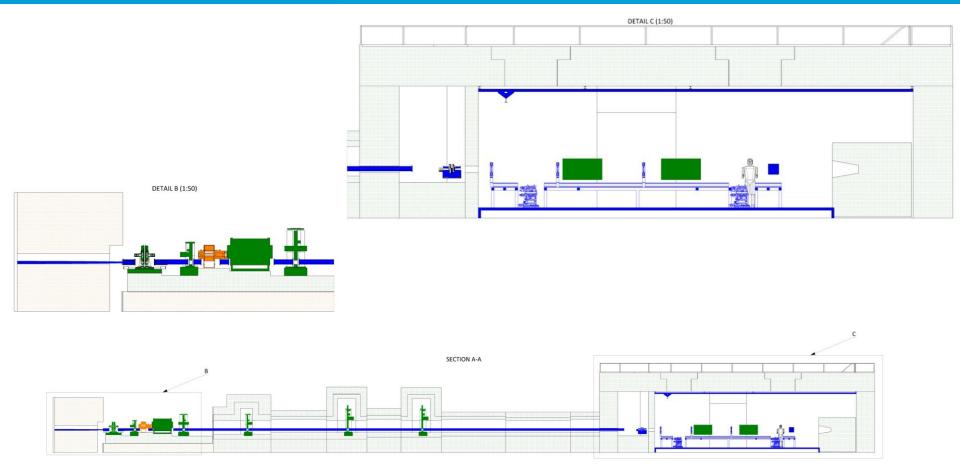

Technical overview of ODIN



- 50m from source to pinhole, 15m from pinhole to beam stop.
- Current preference is for a straight beamline (curved is an option).
- Extraction will be bi-spectral, with focusing guides along the beamline.
- Chopper cascade consisting of 9 chopper axis.(2 of which are 1.8m diameter and 14Hz).
- Prompt Pulse Suppression chopper will likely be needed.
- Total number of motion axis will be >77

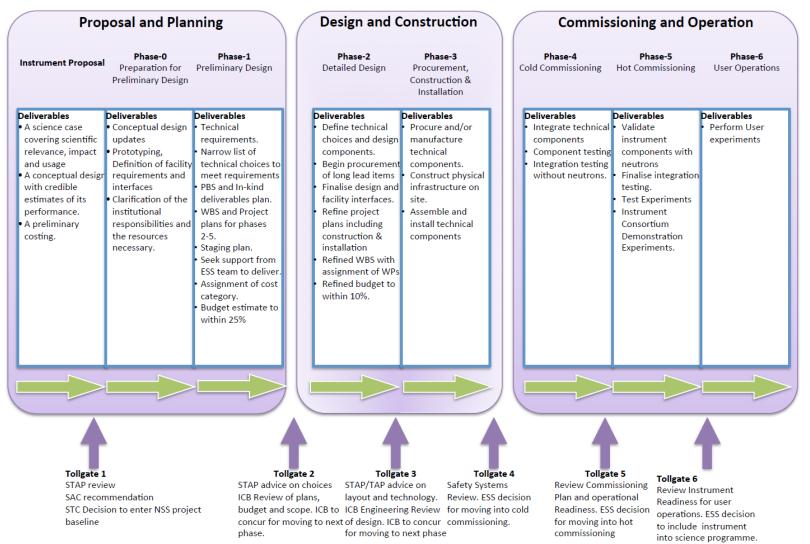
Bi-spectral extraction concept

propagation direction [cm]


ODIN's Partners

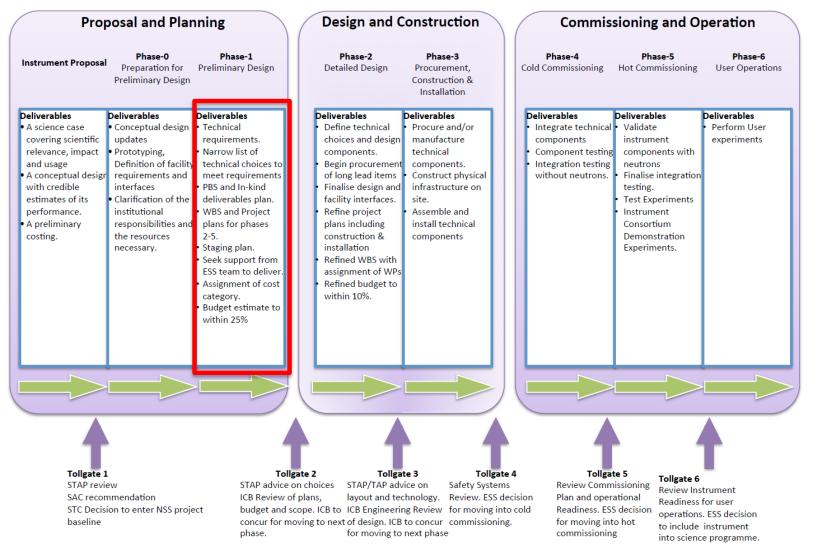
- ODIN will be delivered using significant in-kind resources
- Technische Universität Munchen (TUM) Project Lead Institute ≈58%
- Paul Scherrer Institute (PSI) ≈34%
- ESS ≈8% (pluse some items not included in the project cost ≈€1.8M)
- Other partners are likely to get involved later in the project
- An Instrument Consortium will be formed by the partners institutions

Partner contributions



Instrument Project Lifecycle

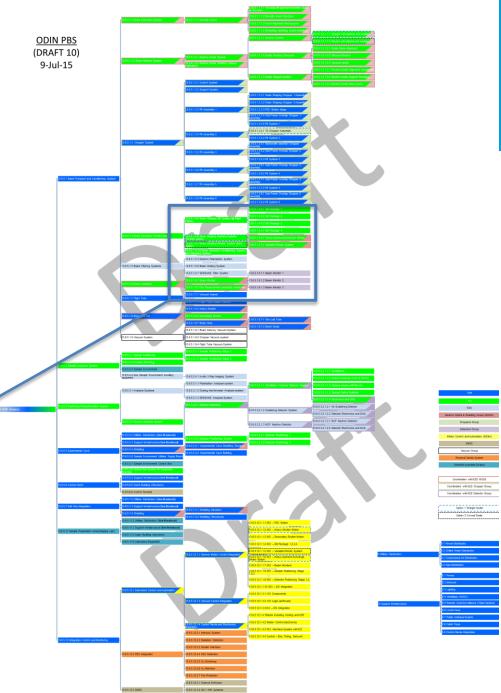
ESS Instrument Project Stages



Instrument Project Lifecycle

EUROPEAN SPALLATION SOURCE

ESS Instrument Project Stages


TG2 Documentation (Baseline Documents)

Requirements Document	Concept of Operations	Product Breakdown Structure	Process & Instrumentation Diagram	Interface Control Documents
•the scientific and technical requirements that describe the needed performance parameters of the instrument	 Describes the expected operation of the instrument during the ESS operations phase. The basic steps of the experiments are explained 	•A functional decomposition of the instrument into components	•Schematic layout of the instrument showing all of the connections	•Describes the interfaces between all of the systems within the instrument and to the "outside" world
Instrument Work Package Specification	Work Unit Documents	Technical Group design documents	Staging Plan	Draft Hot Commissioning Plan
•Provides a single document that describes what is going to be built, how much it will cost, and how long it will take.	•For each technology area/functional decomposition, an estimate of the cost to design, procure, fabricate, install, and commission these components	•Technical description of the components	•How to extend the capabilities of the instrument beyond what can be provided for in the construction budget	•Describes the initial experiments needed to verify the instrument performance
	Schedule		D CAD model of instrument envelope	

Product Break-down Structure (PBS)

 The PBS aims to identify major component deliverables

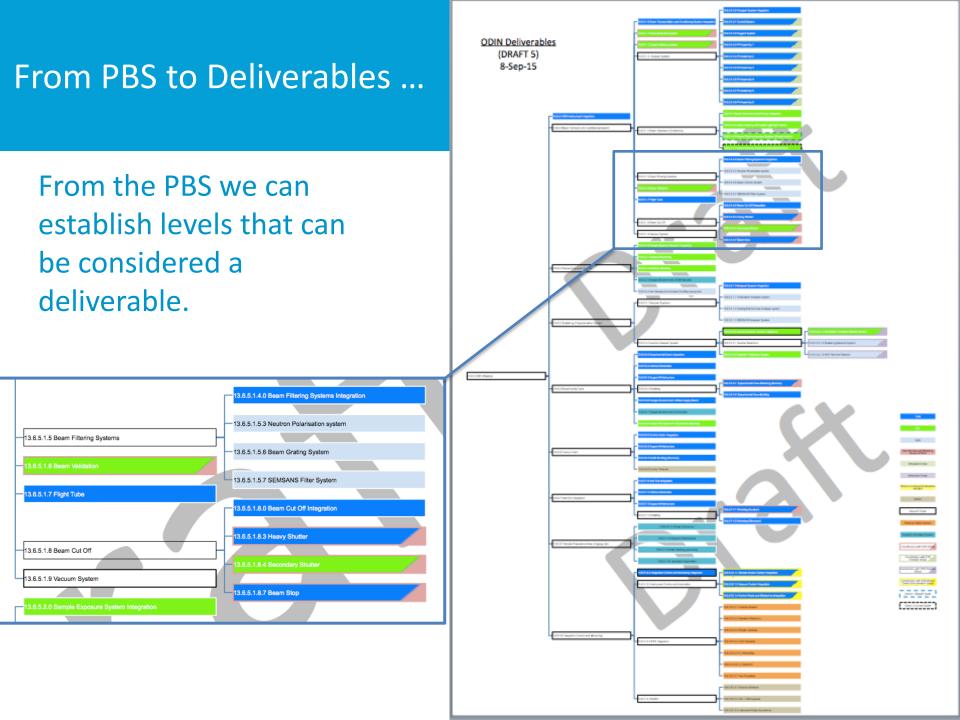
 13.6.5.1.4.5 Beam Shaping Silt System (@ Flight Tubes)
 13.6.5.1.4.5.2 Silt Package 2

 13.6.5.1.4.5 Beam Shaping Silt System (@ Flight option)
 13.6.5.1.4.5.3 Silt Package 3

 13.6.5.1.4.5 Beam Shaping Aperture System (Straight option)
 13.6.5.1.4.5.4 Silt Package 4

 13.6.5.1.4.7 Beam Shaping Pinhole System (Bent Option)
 13.6.5.1.4.6.1 Heavy Aperture I

 13.6.5.1.4.7 Beam Shaping Pinhole System (Bent Option)
 13.6.5.1.4.7.1 Variable Pinhole


 13.6.5.1.5.3 Neutron Polarisation system
 13.6.5.1.6.1.4.7.1 Variable Pinhole

 13.6.5.1.5.6 Beam Grating System
 13.6.5.1.6.1.1 Beam Monitor 1

 13.6.5.1.6.1 Beam Monitor
 13.6.5.1.6.1.2 Beam Monitor 2

 13.6.5.1.6.2 Flux Measurement assembly (Gold folls)
 13.6.5.1.6.1.3 Beam Monitor 3

3.6.5.1.7.1 Vacuum Vessel

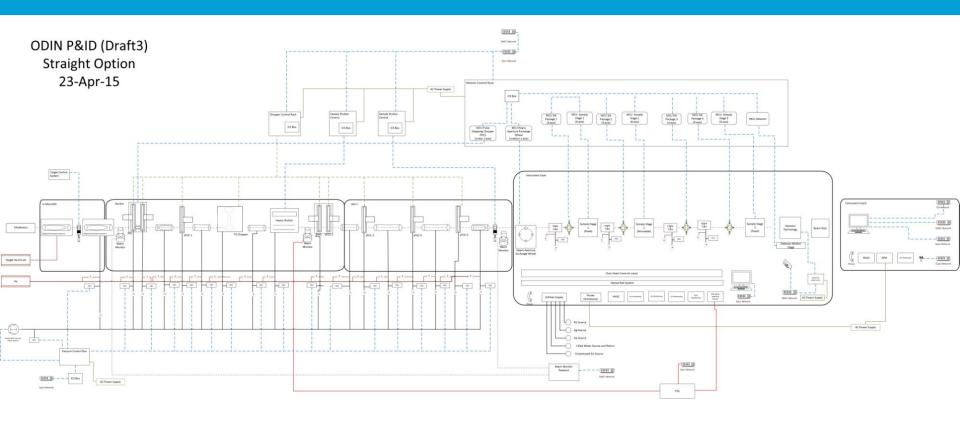
... to Work Units

Deliverah			Delivering				
<u>Deliverab</u> <u>le Group</u>	<u>PBS Number</u>	Deliverable Description	<u>Delivering</u> Institute				
			institute				
		strument Project Budget					
Integration and Management	13.6.5.0	ODIN Instrument Integration Beam Transportation and Conditioning System					
	13.6.5.1.0	Integration					
	13.6.5.1.3.0	Chopper System Integration					
	13.6.5.1.4	Beam Geometry Conditioning Integration					
	13.6.5.1.5.0	Beam Filtering Systems Integration					
	13.6.5.1.8.0	Beam Cut Off Integration					
	13.6.5.2.0	Sample Exposure System Integration					
	13.6.5.3.1.0	Analyser System Integration					
atic	13.6.5.3.2.0	Neutron Detector System Integration					
egr	13.6.5.5.0	Experimental Cave Integration					
<u> p</u>	13.6.5.6.0	Control Hutch Integration					
	13.6.5.7.0	Hall One Integration					
	13.6.5.12.0	Integration Control and Monitoring Integration					
	13.6.5.1.1	Beam Extraction System					
Neutron Transport System	13.6.5.1.2	Beam Delivery System					
	13.6.5.1.4.6	Beam Shaping Aperture System (Straight Option)					
	13.6.5.1.4.7	Beam Shaping Pinhole System (Bent Option)					
. ft	13.6.5.1.6	Beam Validation (Flux and Monitors)					
Ne	13.6.5.1.7	Flight Tube					
	13.6.5.1.8.4	Secondary Shutter(s)					
Heavy Shutter	13.6.5.1.8.3	Heavy Shutter					
PPSc System	13.6.5.1.3.4.1	T0 Chopper Assembly					
	13.6.5.1.3.1	Control System					
ε	13.6.5.1.3.2	Support System					
Chopper System	13.6.5.1.3.3	Pit Assembly 1					
r S	13.6.5.1.3.4	Pit Assembly 2					
bbe	13.6.5.1.3.5	Pit Assembly 3					
loy	13.6.5.1.3.6	Pit Assembly 4					
U	13.6.5.1.3.7	Pit Assembly 5					
	13.6.5.1.3.8	Pit Assembly 6					
ء	13.6.5.1.4.5	Beam Shaping Slit System (@ Flight Tubes)					
Cave, Cave Interior & Hutch	13.6.5.2.1	Sample Positioning					
	13.6.5.2.2	Ancillary Mounting					
or ,	13.6.5.3.2.2	Detector Positioning System					
Cav Interi	13.6.5.5.4.2	Experimental Cave Building					
	13.6.5.5.8	Optical Rail System for Equipment Mounting					
	13.6.5.6.5	Hutch Building (Structure)					

	13.6.5.1.5.3	Neutron Polarizationon system	
Add-on development	13.6.5.1.5.6	Beam Grating System	
	13.6.5.1.5.7	SEMSANS Filter System	
	13.6.5.2.3	Sample Environment (ODIN Specific)	
	13.6.5.2.4	Non Sample Environment Ancillary equipment	
	13.6.5.3.1.1	Polarisation Analyser system	
	13.6.5.3.1.2	Grating Interferometer Analyser system	
	13.6.5.3.1.3	SEMSANS Analyser System	
	13.6.5.5.7	Sample Environment Control Box	
Conventio nal white beam detectors	13.6.5.3.2.1.1	Scintillator / Camera Detector Systems	
T - F	13.6.5.3.2.1.2	Scattering Detector System	
ToF detectors	13.6.5.3.2.1.3	MCP Neutron Detector	
	13.6.5.1.8.7	Beam Stop	
Shieldin g	13.6.5.5.4.1	Experimental Cave Shielding (Nuclear)	
	13.6.5.7.4.1	Shielding (Nuclear)	
	13.6.5.7.4.2	Shielding (Structural)	
	13.6.5.5.2	Utilities Distribution	
	13.6.5.5.3	Support Infrastructure	
edi	13.6.5.5.6	Sample Environment Utilities Supply Board	
ξ	13.6.5.6.3	Support Infrastructure	
bd	13.6.5.7.2	Utilities Distribution	
Support Media	13.6.5.7.3	Support Infrastructure	
	Outside the ODIN I	nstrument Project Budget	
-	13.6.5.12.2.1	Interlock System	
trol	13.6.5.12.2.2	Radiation Detection	
Sys	13.6.5.12.2.3	Shutter Interface	
Personnel tection Sysi Access cont	13.6.5.12.2.4	H ₂ O Detection	
Personnel Protection System & Access control	13.6.5.12.2.5	O ₂ Monitoring	
Pro 8	13.6.5.12.2.6	H ₂ Detection	
	13.6.5.12.2.7	Fire Protection	
Vacuum	13.6.5.1.9	Vacuum System	
System	13.6.5.12.1.3	Vacuum Control Integration	
Moti	13.6.5.12.1.1	Generic Motion Control Integration	
on contr ols	13.6.5.12.1.4	Control Racks and Electrical Integration	
Data DMSC	13.6.5.5.6.6	Control Terminal	
	13.6.5.12.3.1	Science Software	
	13.6.5.12.3.2	GUI \ HMI Systems	
	13.6.5.12.3.3	Instrument Video Surveillance	
Imaging Lab	13.6.5.11.2	Utilities Distribution	
	13.6.5.11.3	Support Infrastructure	
	13.6.5.11.5	Cabin Building (Structure)	
	13.6.5.11.6	Laboratory Equipment	

Schedule and Budget Documentation

Schedule:


- We have begun a project schedule for Phase 2 and beyond.
- We have the activities, predessors and external milestones to form the project network.
- We just need good estimations of duration to form the project schedule.

Budget:

- A budget was created with the proposal, it is intended that this budget be refined with more accurate costs for the technical solutions that are proposed.
- These refined numbers will come typicaly as we get the numbers for the schedule.

Process and Instrumentation Diagram (P&ID)

Chopper Cascade

Assy1 Assy6 Assv2 Assv3 Assy4 Assy5 Assy7 Assy8 Assy9 Axis2 Axis3 Axis5 Axis7 Axis8 Axis10 Axis1 Axis4 Axis6 Axis9 PSC1 PSC2 sFOC1 PPSc sFOC2 BWC1 BWC2 sFOC3 sFOC4 sFOC5 17700 700 1000 1200 1800 1800 700 800 1000 1000 56 56 42 42 28 28 28 14 14 14

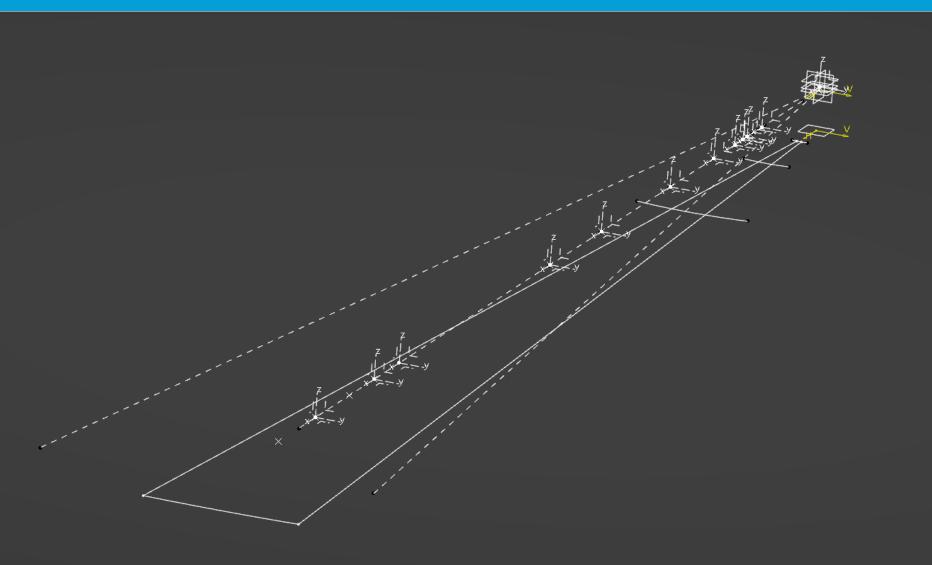
Diameters range from 700mm to 1800mm

Frequency ranges from 14 – 56Hz

PPSc will require development

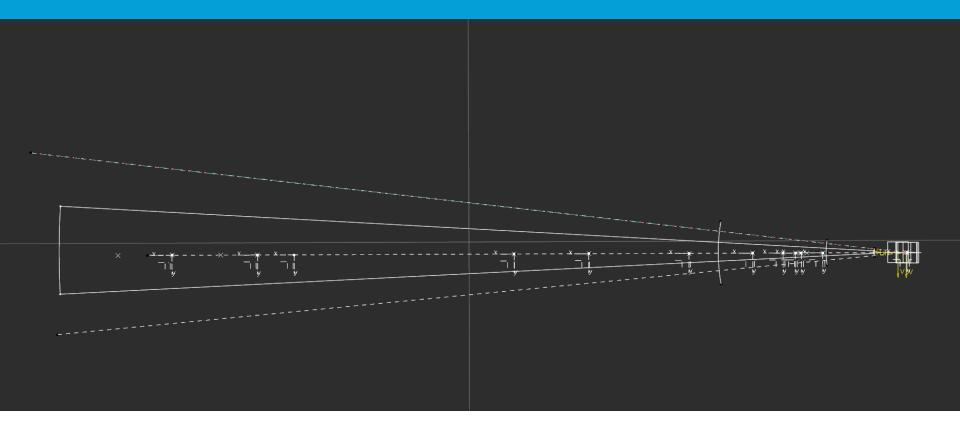
Large diameter rotors will also require development

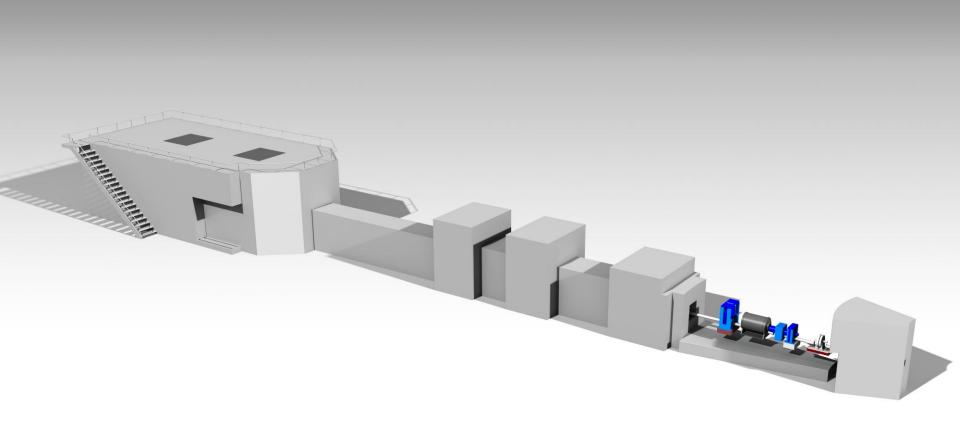
CAD : Instrument Skeleton and Envelope

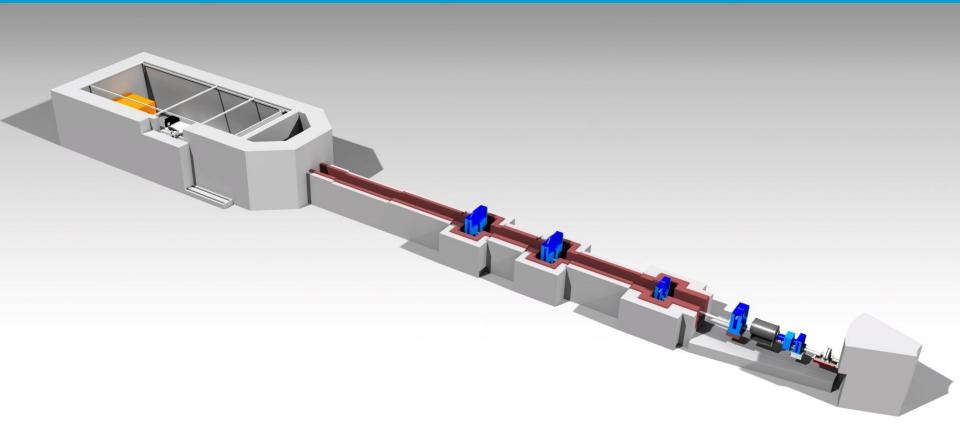

EUROPEAN

SPALL ATION

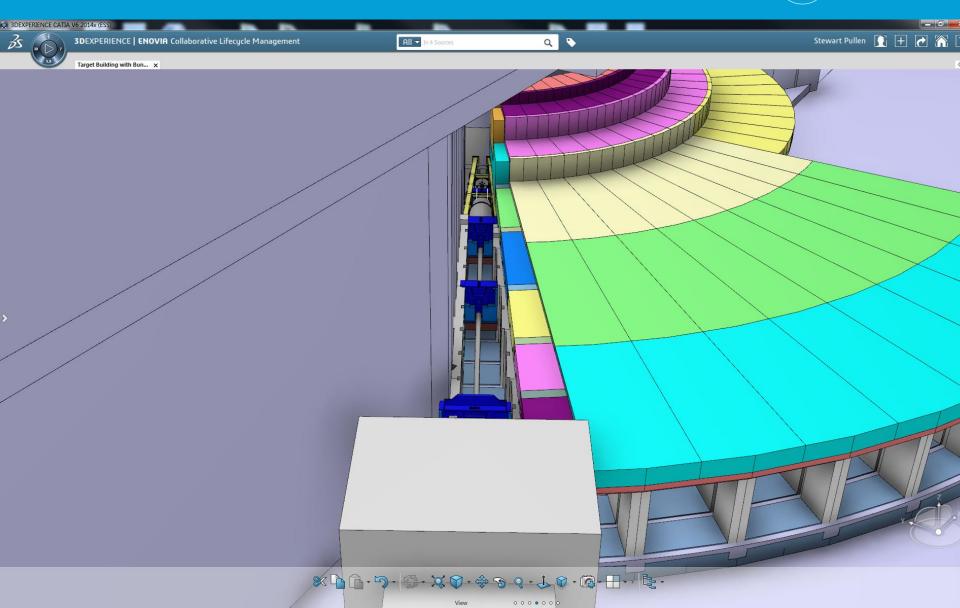
- The Instrument Skeleton is a basic geometric representation of the instruments key features.
- This will reflect the parameters used in the McStas² model and shielding calculation so that all models reflect the same key instrument features.
- This should be performed by an agreement in the parameters used in all.
- The skeleton will allow for easy integration into the wider facility CAD (the ESS Plant Layout (EPL)).

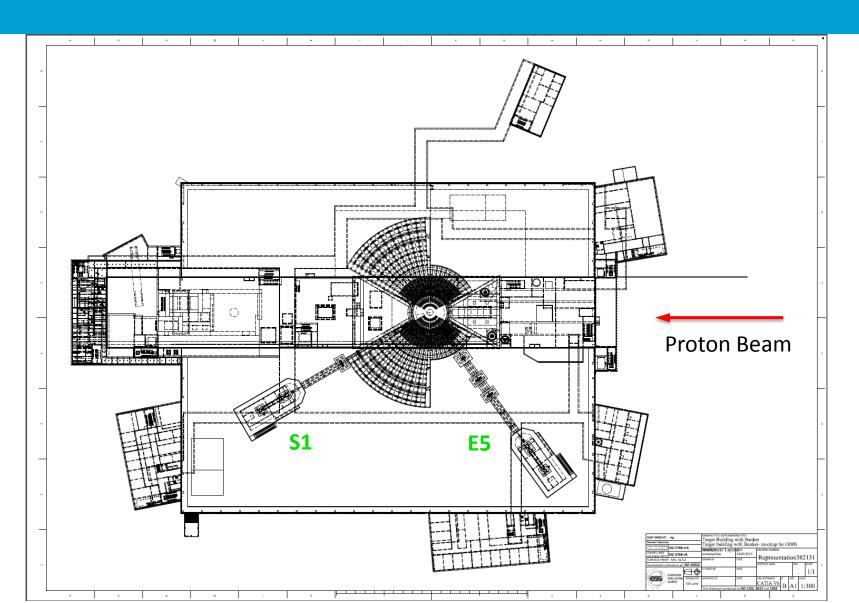

Isometric view of the ODIN Skeleton

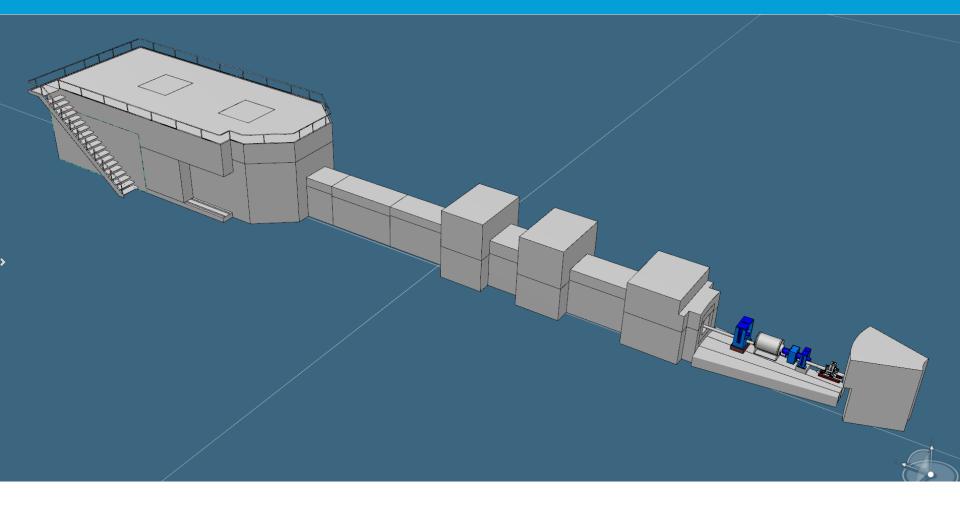

Top view of the ODIN Skeleton


ODIN CAD Model

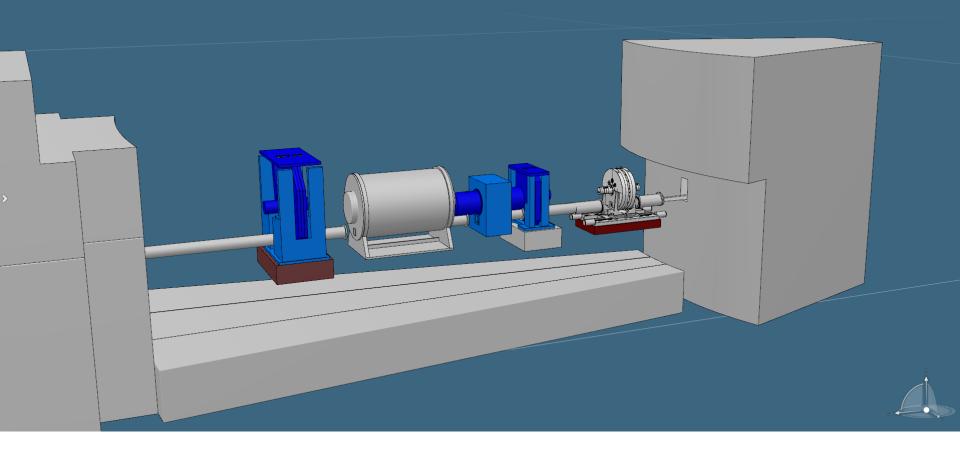
ODIN CAD Model cont.

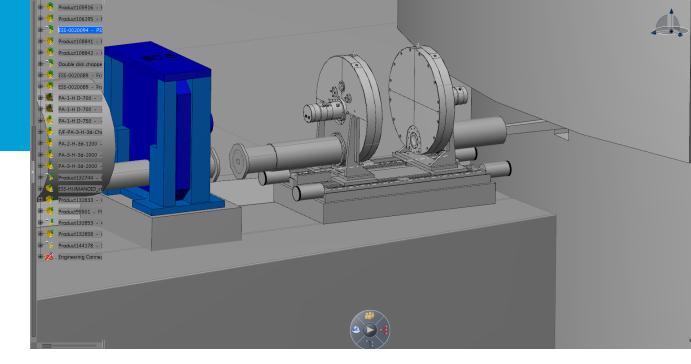

Preliminary EPL integration test

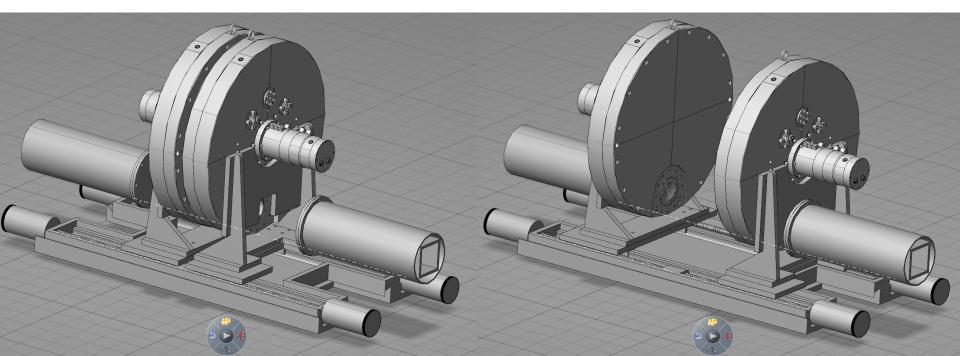

Preliminary EPL integration test

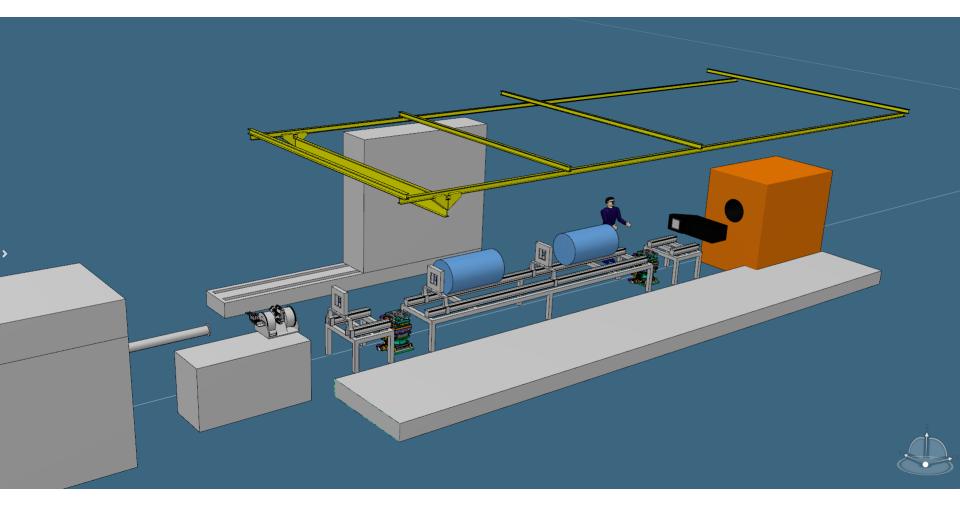


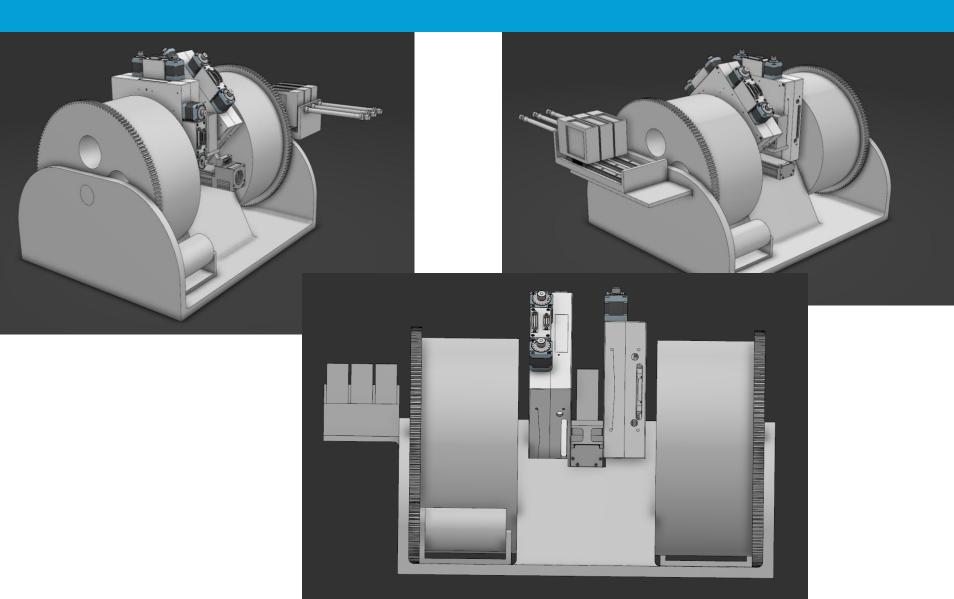
Current CAD progress on ODIN

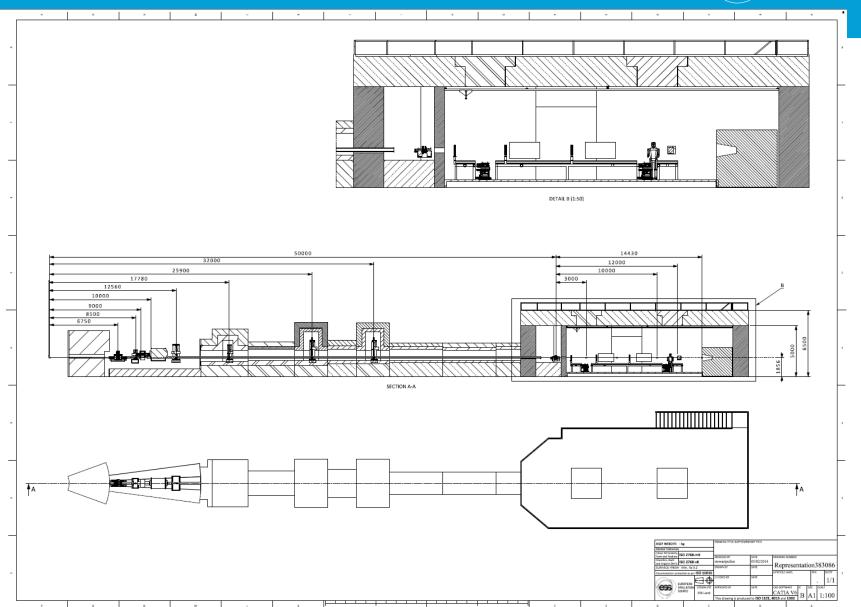


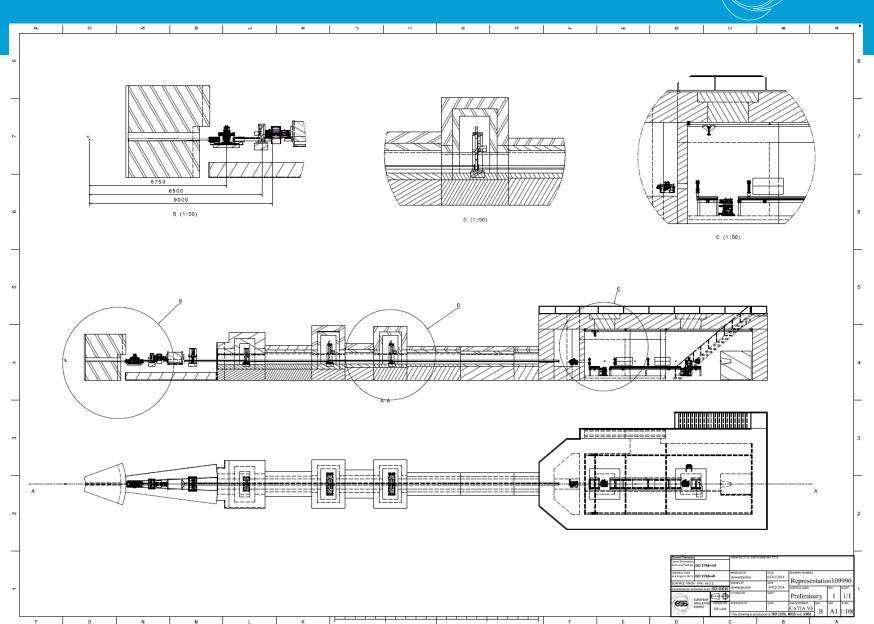

Draft layout drawings

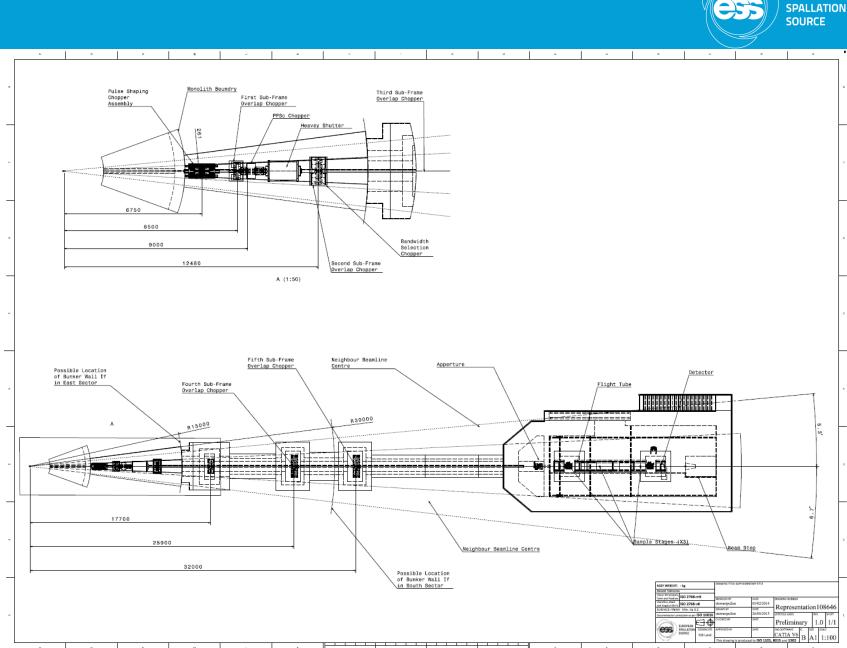





Concept for End Station Design (Cave layout)


Concept for Pinhole Collimator




Draft layout drawings

Draft layout drawings

EUROPEAN

Contributions* to Phase 1 (so far...)

<u>ESS</u>

Markus Strobl – Instrument Proposer and Lead Instrument Scientist

Stuart Ansell, Anders Sandstrom, David Fitzgerald, Dariusz Zielinski

<u>TUM</u>

Burkhard Schillinger

Philipp Schmakat

PSI

Eberhard Lehmann

Manuel Morgano

* Includes anyone I forgot to name here!

Questions???