

EUROPEAN SPALLATION SOURCE

NMX a macromolecular crystallography diffractometer at ESS

Giuseppe Aprigliano Instrument Project Engineer NMX

> www.europeanspallationsource.se Denim 2015 September 9th , 2015

Summary

- The project structure
- NMX Scientific case
- NMX project status
- Baseline layout
 - Shielding
 - Wavelength selection Chopper
 - Endstation
 - Detectors

Project structure

EUROPEAN SPALLATION SOURCE

Instrument Project Leader: Esko Oksanen, ESS

Instrument Project Engineer: Giuseppe Aprigliano, ESS

Zoe Fisher Anders Pettersson **Richard Hall Wilton** Dorothea Pfeiffer Phillip Bentley (ESS-NOSG) Valentina Santoro Damian Martin Rodriguez lain Sutton Markus Olsson Stuart Birch Peter Ladd Marcelo Juni Ferreira Thomas Gahl Paul Barron Thomas Holm Rod Jonathan Taylor Peter Sångberg Magnus Israelsson Jean-Luc Ferrer Márton Markó

(ESS-SAD) (ESS-SAD) (ESS -Detector group) (ESS- Detector group/CERN)

(ESS-NOSG)
(ESS-NOSG)
(ESS-NCG)
(ESS-NCG)
(ESS-Vacuum Group)
(ESS-Vacuum Group)
(ESS-Vacuum Group)
(ESS-MCA)
(ESS-MCA)
(ESS-DMSC)
(ESS-DMSC)
(ESS-SPD)
(ESS-Programme office)
(IBS – GSY Group)
(Wigner research centre)

NMX Scientific case

EUROPEAN SPALLATION SOURCE

"Small" crystals : 0.2mm to 5mm

Oksanen, E *et al. J. R.* Soc. Interface **2009**, 6 Suppl 5, S599-610.

Quasi-Laue time of flight diffractometer

Primary scientific case: Macromolecular crystallography

- Compared to X-ray:
- ☺ Hydrogens are visible
- O No radiation damage
- Second second
- Data collection takes weeks
- © Few instruments available

Beam property	min	max		
Beam size	0.2mm x 0.2mm	5mm x 5mm		
Wavelength	1.8Å	3.55Å		
Max divergence	±0.2°			
Sample-Source distance	157.6m			

NMX project status

NMX project status: Phase 1

EUROPEAN SPALLATION SOURCE

EUROPE/ SPALLATI SOURCE	IN OR	Date Revision State	Macromolecular Diffractometer 01/03/2013 1.2 Revised document for review
			TOTION
	ESS Instrument Cor Macromolecular	nstruction Proposal Diffractometer	
	Name	Affi	ation
ESS Instrument	Name Esko Oksanen	Affii ESS	ation
ESS Instrument WP coordinator ESS Partners	Name Esio Oksnen Esio Oksnen	Affiti ESS ESS	ation
ESS Instrument WP coordinator ESS Partners The following tab	Name Esko Oksanen Esko Oksanen Leiko Oksanen	Affinition of the	ation submitted proposal.
ESS Instrument WP coordinator ESS Partners The following tab Document reviewer	Name Esko Oksanen Esko Oksanen Esko Oksanen e is used to track the ESS into Neme Ken Andersen	Affinition of the ESS	ation submitted proposal. ation
ESS Instrument WP coordinator ESS Partners The following table Document reviewer Document	Name Esko Oksanen Esko Oksanen le is used to track the ESS into Name Ken Andersen Oliver Kintein	ernal distribution of the	ation submitted proposal, ation
ESS Instrument WP coordinator ESS Partners The following table Document reviewer Document approver Distribution (list names)	Name Elio Oksanen Elio Oksanen le is used to track the ESS inte Name Nen Andersen Oliver Kinstein	ernal distribution of the ESS ESS Ernal distribution of the ESS ESS	iation submitted proposal. iation
ESS Instrument WP coordinator ESS Partners The following table Document reviewer Document approver Distribution (list names)	Name Esko Oksanen Esko Oksanen Esko Oksanen e is used to track the ESS into Nen Andersen Oliver Kinstein	emal distribution of the ESS ESS ESS ESS ESS ESS	ation submitted proposal. ation
ESS Instrument WP coordinator ESS Partners The following table Document reviewer Document Document names)	Name Esko Oksanen Esko Oksanen le is used to track the ESS into Name Ken Andersen Oliver Kinstein	ernal distribution of the ess ess ess ess ess ess ess ess ess e	submitted proposal. ation Exopern Spilation Source ESS 48 billing address. ESS, Tarobion 20 95-22.10 Lund

Baseline Documents:

Instrument Work Package Specification P&ID of Instrument Schedule Budget 3D CAD model of instrument envelope

Technical Group design documents Work Unit documentation Product Breakdown Structure Concept of Operations for the instrument Requirements List Staging Plan Draft Commissioning Plan

High level scientific requirements

EUROPEAN SPALLATION SOURCE

- 1. The instrument shall allow data collection from crystals with unit cell repeats > 300Å.
- 2. The instrument shall allow data to be collected to a d_{min} of 1.5 Å.
- 3. The instrument shall match the size of the neutron beam to the size of the sample.
- 4. The instrument shall match the divergence of the neutron beam to the mosaicity of the sample.
- 5. The instrument should maximise the signal-to-background (S/B) ratio of the Bragg reflections.
- The instrument should allow data collection from crystals of < 0.01 mm³ volume

10. Sample alignment stroke

- 10.1. The SPS shall have ±10 mm stroke to position the sample in intersection of the sample rotation axis and the neutron beam axis.
- 10.2. **Rationale**: Samples can be mounted on pins and capillaries of widely varying length (see ConOps) and they need to be positioned at the beam center (see 13.6.4.2(1).
- 10.3. Verification: Test

NMX – Summary Construction Schedule Key – Key Milestones and Tasks

Partner institutes:

Wigner Research Centre for Physics

Neutron guide system Chopper system Secondary Shutter Manpower (Through NOSG) (Through NCG)

Detector positioning system

EUROPEAN SPALLATION SOURCE

NMX in one of the possible port allocation

System	Description						
Beam properties at	١	Wavelength bandBeam size1.74 Å (1.8-3.55 Å)5mm x 5 mm (max)		Beam size	Divergence		
sample position	1			n x 5 mm (max)	± 0.2° (max)		
Neutron Guides	Start (m)	End (m)	Height (mm)	Width (mm)	Horizontal Geometry	Vertical Geometry	Coating
Extraction	2.0	6.0	30 to 45	30	Straight	Lin. tapered	m=1 sides; m=2 top/bottom
Inside Bunker	6.0	31.5	45	30	Curved R1.2Km	Straight	m=1; m=2.2 only outer side,
Outside Bunker	31.5	154	45	30	Straight	Straight	m=1
Frame overlap mirror	1.2° inclination in vertical plane, m=1, substrate						

Baseline Layout: Shielding

EUROPEAN SPALLATION SOURCE

Baseline layout: Experimental cave

EUROPEAN SPALLATION SOURCE

Baseline layout: Experimental cave

EUROPEAN SPALLATION SOURCE

17

Baseline layout: Experimental cave

EUROPEAN SPALLATION SOURCE

Simulations are being carried on by Concrete blocks to fill the Valentina Santoro of the ESS NOSG the space in the shielding To properly specify thicknesses and bunker materials specifications. Metal cans filled with borated wax Chopper casemates, Pre-casted concrete elements Concrete culverts,

pre-casted.

Wavelength Selection Choppers

EUROPEAN SPALLATION SOURCE

Disk diameter 700mm Rotating frequency 14 Hz B4C resin-epoxy coating. 00. Single disk at 32m Double, co-rotating disk at 80m 6NCC 150 125 6 100 3.691 75 50 25 1.8-3.55 Å nominal bandpass Courtesy of: Markus Olsson (NCG)

Endstation

Endstation

Endstation

Arbitrary orientation of spindle axis in the lower hemisphere. Limited S.O.C. <0.04 mm rms during rotation. Sample changer capability Minimized user interaction with Exp cave hardware.

G-Rob at BM-30A FIP (ESRF)

Contact: Jean-Luc Ferrer (IBS Greoble)

EUROPEAN SPALLATION

SOURCE

Detectors

• Dorothea Pfeiffer (ESS/CERN), Richard Hall Wilton(ESS)

Three detectors of 600 mm x 600mm active surface. Expected spatial resolution 200 μ m using μ TPC

Manufactured with printed circuit technology developed at CERN by A. Gandi and R. De Oliveira

GEM Foil

Typical geometry: 5 μ m Cu on 50 μ m Kapton 70 μ m holes at 140 mm pitch

Triple GEM with Gd2O3 coated cathode 100mmx100mm prototype

²⁴¹AmBe HV PF 1 MΩ B₄C 0 MΩ 550 kΩ 8 mm ⁴He or ⁷Li 1 MΩ 10 MΩ 2 mm 500 kΩ 2 mm 2 mm 1 MΩ 10 MΩ 450 kΩ 1 MΩ

The μTPC method: improving the position resolution of neutron detectors based on MPGDs D.Pfeiffer et al. 2015 JINST 10 P04004 doi:10.1088/1748-0221/10/04/P04004 23

Courtesy of: Dorothea Pfeiffer

Detectors

• Dorothea Pfeiffer (ESS/CERN), Richard Hall Wilton(ESS)

Three detectors of 600 mm x 600mm active surface. Expected spatial resolution 200 μ m using μ TPC

Triple GEM with Gd2O3 coated cathode

Detectors

Example of detector positioner based on Stäubli robot

Preliminary design to start in September 2015

Performance	Min	Max	
Sample detector distance	0.2 m	1m	
Hor. Plane 2θ angle	-165°	165°	
Vert. Plane	Upper hemisphere		

- Collection only on upper hemisphere.
- Industrial components with high reliability
- Scalable system (more detectors / heavier detectors).
- Technical risks are compensated by large flexibility

EUROPEAN SPALLATION SOURCE

Thank you for your attention

