

Budapest Cold Neutron Source

History – Operation – Utilization

Jozsef Janik E-mail: jozsef.janik@energia.mta.hu

DENIM

7-9 September, 2015 Budapest

Content

Budapest Research Reactor (BRR) History, main technical data Operation and Utilization Budapest Cold Neutron Source (BCNS) History, main technical data Operation Maintenance **Future**

Bird's eye view of BRR site

11111

and a

III

Secondary Pump Room Cooling Towers Air Ventilation System TOF Measuring Hall CNS Measuring Hall

CNS Hall

fister!

Reactor Hall

Hungarian Academy of Sciences

BRR history

Tank-type reactor, moderated and cooled by light water

- Went critical in 1959
 - Fuel: EK-10, thermal power: 2 MW
- ✤ <u>1st Upgrade in 1967</u>
 - Core surrounded with beryllium reflector
 - − Fuel changed: EK-10 \rightarrow VVR-SM, Thermal power: 2MW \rightarrow 5 MW
 - Stopped for partial decommissioning in 1986
- ✤ 2nd Upgrade (full scale reconstruction) from 1986 ... to 1990
 - With the exception of the civil engineering construction all equipment was replaced
 - Physical start-up in December 1992
 - Energetic start-up procedure from March to October 1993
 - Operating licence: 25 November, 1993
 - − From that time the BRR operates on average \approx 3500 hours/year.
 - Nowadays BRR operates in 10 day cycles
- HEU-LEU conversion started (15 September, 2009)
- HEU-LEU conversion finished (03 November, 2013)

Hungarian Academy of Sciences

Main technical data

Reactor type:	Tank-type with beryllium reflector, cooled and moderated with light water	
Vessel:	Al-alloy (height: 5685 mm; Ø2300 mm)	
Core geometry:	Hexagonal (length: 600 mm; Ø1000 mm)	
Fuel:	VVR-M2, 19.75% enrichment	
Equilibrium core	190 fuel elements (5×38 age-group FAs)	
Control:	3 safety rods (B ₄ C); 14 control rods (B ₄ C);	
	1 automatic control rod (SS)	
Thermal power:	10 MW	
Main power density:	61.2 kW/litre (in the core)	
Neutron flux density in the core:	2.5×10 ¹⁴ (thermal in flux traps) En<0.625 eV	
	1×10 ¹⁴ (in fast channels) En>0.5 MeV	
Cooling systems:	Two closed loops (primary and secondary loops)	
Pr.cooling water:	Q _{nominal} : 1650 m³/h; T _{inlet} : 45 °C; T _{outlet} : 50 °C	

Hungarian Academy of Sciences

Main technical data I

Moderator type: Liqu		Liqui	iquid Hydrogen type, cooled with Helium			
Kryo Tubes Dou		Doub	Double wall, insulated with vacuum			
Refrigerator		Linde TCF50 300W with siemens PLC				
Compressors		Kaeser AS36, BS 61				
	NO		SO	Cold down	Warm up	
PI2150	10,98 ba	ara	11,04 bara	11,03 bara	11,02 bara	
PI2250	1,04 bara		1,05 bara	1,05 bara	1,05 bara	
PI2155	3,6 bara		3,91 bara	5,17 bara	5,16 bara	
PI3185	1,46 bara		1,54 bara	1,47 bara	1,54 bara	
PI3905	1,86 Volt		6,3 Volt	1,88 Volt	6,3 Volt	

Main technical data II

	NO	SO
TI3110	61,7 K	303,1 K
TI3126	15,0 K	303,1 K
TI3111	53,8 C	27 °C
TI3121	49,7 ℃	27 °C
TI3180	15,2 K	303,1 K
TI3280	23,8 K	303,1 K

Hungarian Academy of Sciences

Operation

- Reactor operation
 - Nowadays BRR operates in 10 day cycles
 - The reactor operation cycle begins on Tuesday at 11 A.M.
 - The reactor stops on Friday next week at 12 P.M.
- Work in NO
 - Helium purification happans on Monday
 - BCNS starts on Tuesday 8.00 A.M.
 - The He will be liquid about 7 P.M.
 - The warm up of the CNS begins on Friday at 12.30 P.M.
 - Stops about at 6.30 P.M.

✤ Work in SO

- SO starts half an hour before the reactor starts
- Than the emergency cooling is opened
- SO stops 20 minutes after the reactor is stopped
- Finaly the emergency cooling is shut

Planned maintenance

✤ <u>Maintenance method</u>

- Maintenance methods are based on the manuals of CNS
- We plan the maintenance acording to the number of operating hours and the long term outage in summer
- Exceptions: the sudden malfunctions or oil change in compressors

Some examples for exceptional cases

- Every day
 - Supervising Pressure of Helium blanketing subsystem
 - PLC
- Before system starting
 - Supervising compressors, refrigerating system
 - PLC

Hungarian Academy of Sciences

Planned Maintenance

✤ Compressor BS61

Weekly	Check oil level Check oil leak
500 hours	Check tension of Fan belt
About indication Kaeser control	Change oil filter Change oil remover patron
1000 hours	Check of the oil and the purity of the gas cooler
2000 hours or once a year	Greazing ball bearings of fan
8000 hours or once a year	Change oil Change oil filter
6000/12000 hours or three years	Change ball rings of fan

Thank you for your attention!