
Digital Acquisition Instruments for Neutron Identification Matteo Corbo

Design and Engineering of Neutron Instruments Meeting 7-9 September, 2015

CAEN Network Companies

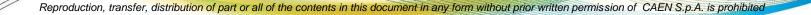
- Founded in 1979, CAEN SpA (Costruzioni Appearecchiature Elettroniche Nucleare) is an important industrial spin-off of the INFN
- 70 people
- Core business: electronic Instrumentation for high energy physics experiments
- Spin-off activities: RFID (2003), CAENels (2010), CAEN SSp (2011), CAENqS (2012)

2

Global coverage

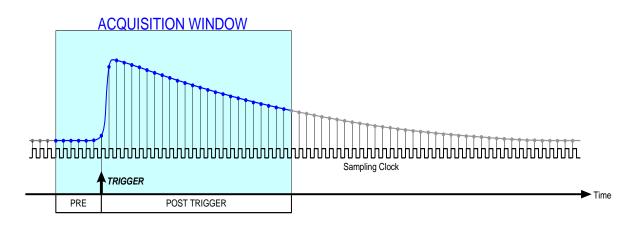
CAEN's Expertise

HV and LV Power Supplies for radiation and Low Light Sensors


- Multichannel CAEN Systems
- Multichannel NIM and VME Modules
- Compact Stand Alone Modules

• Signal Conditioning & Read-out Electronics

- VME, NIM, CAMAC, Stand Alone Front-End/Data Acquisition Modules
- Waveform digitizers
- Powered Crates and Chassis
- Custom Developments
 - Software User Interface



Memory Buffer

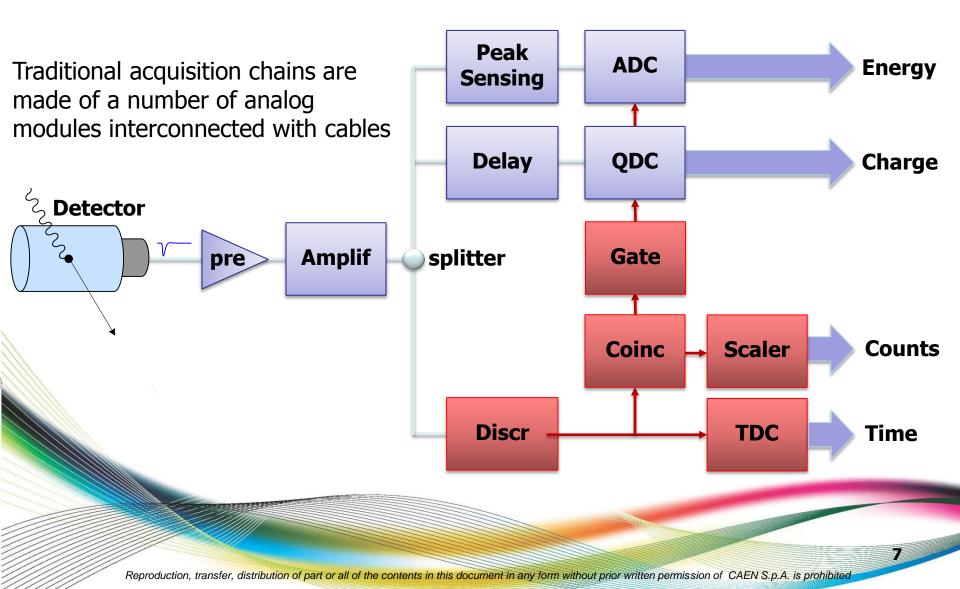
5

• Digitizers as Oscilloscopes

– Waveforms, time and voltage amplitude

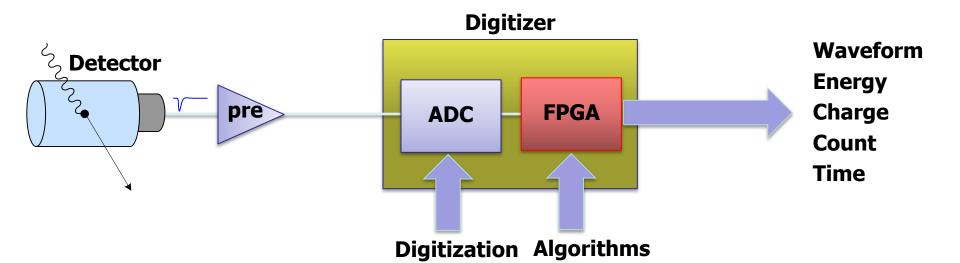
DETECTOR DETECT

... and something more


- Onboard analysis through dedicated firmware algorithms
- Designed for demanding data transfer
- Digitizers V.S. Analog acquisition systems
 - Real time and remote monitoring/setting
 - Adapt to detector upgrades
 - Waveform transfer, so room for later offline analysis
 - Different processing algorithms can be installed
 - Reduction in size, cabling, power consumption and cost per channel

6

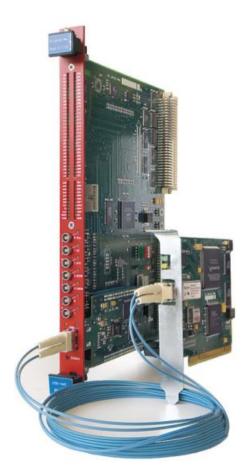
Traditional acquisition chain


A/D conversion at the end of the chain

Fully digital acquisition chain

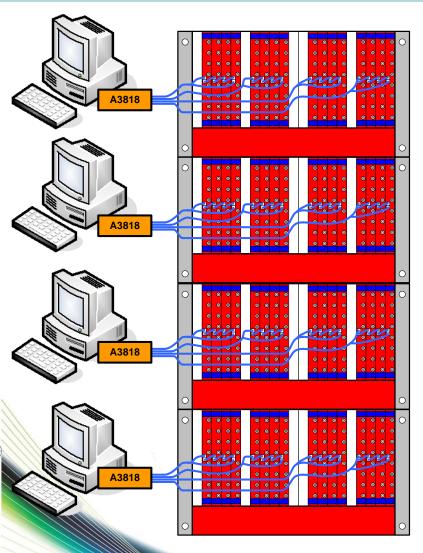
8

The aim of the Digital Pulse Processing is to make a "all in digital" version of analog modules such as Shaping Amplifiers, Discriminators, QDCs, Peak Sensing ADCs, TDCs, Scalers, Coincidence Units, etc.


CAEN Digitizers Highlights

- VME, NIM, Desktop form factors
 - VME64, VME64X compliant
- Hardware
 - FPGA firmware for Digital Pulse Processing
 - Interfaces: Optical Link (CONET), USB 2.0
 - Programmable digital I/Os on front panel
 - Memory buffers
- Multi-board synchronization and trigger distribution
 - Clock synthesis and distribution
 - Time stamp reset

- Proprietary protocol: Chainable Optical NETwork
- Benefits of fiber optics: long distance (>500m); no ground loop.
- **Daisy chain** (up to 8 boards) or point to point connection
- Controllers:
 - A2818 PCI (1 link)
 - A3818 PCIe (1, 2 or 4 links)
- VME Bridge also available, A2718
- Up to 80MB/s per link and up to 4 links per controller
- Pros
 - High data throughput without using VME bus communication
 - High flexibility, commercial computers as crate controllers

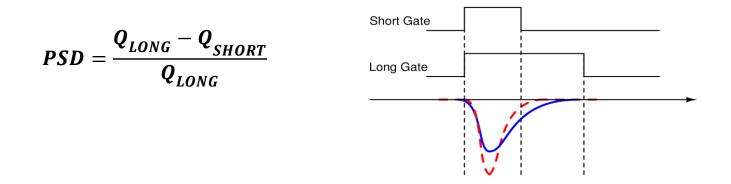


Reproduction, transfer, distribution of part or all of the contents in this document in any form without prior written permission of CAEN S.p.A. is prohibited

10

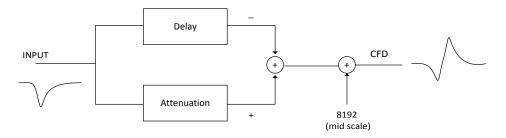
CONET2 readout example: XMASS

- 64 V1751 modules in 4 VME crates
- 512 channels (10 bit @ 1GHz)
- 4 A3818s 4 link PCIe cards
- 16 parallel CONET2 links
- 4 digitizers daisy chained
- Readout Bandwidth = \sim 2 MB/s/ch
- Total Bandwidth = ~ 1 GB/s


11

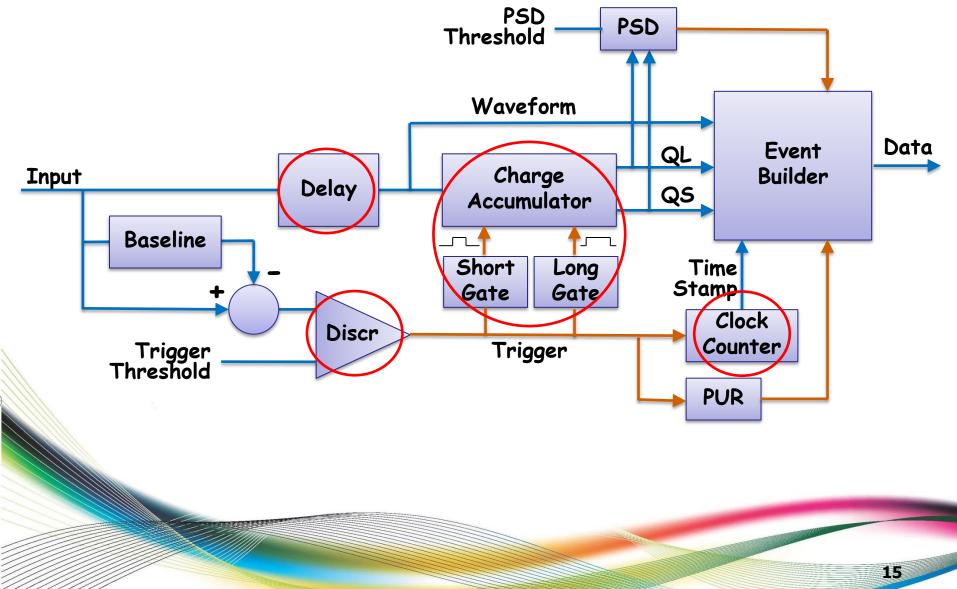
- Standard Firmware
 - Trigger on Leading Threshold
 - Waveforms, Time stamps
- Digital Pulse Processing (DPP) Firmware
 - Zero Length Encoding (ZLE) or Zero Suppression, to extract signal interest regions
 - Pulse Height Analysis (PHA) for spectroscopic applications
 - Charge Integration (CI), to measure particle released energy
 - Pulse Shape Discrimination (PSD), to measure particle released energy and identify through the ionization density
 - On-board and real time analysis
 - Supporting multiboard synchronization and event correlation

- Each channel is a **dual QDC + discriminator + gate generator**
- Dual gate integration for discriminating fast and slow components
- Pulse Shape Discrimination for n-γ separation



Available for x720 (12 bit @ 250MS/s), x751 (10 bit @ 1GS/s) and x730 (14 bit @ 500MS/s) and DT5790 (2 channel 12 bit @ 250MS/s) + 2 High Voltage + 2 Low Voltage for preamps)

13


• **Digital CFD** with time stamp interpolation (in x730, x751 families)

- **Improved measure of the time-of-flight,** possibly with sub nanosecond resolution
- **Pile-up rejection** or gate re-triggering
 - Reject false neutron signals, due to piling-up gammas
- **Online PSD cut to** reduce data throughput using a programmable PSD threshold (e.g. suppress gammas at high rates)
- Typically used with scintillators + PMT or SiPM/MPPC

DPP-PSD Block Diagram

CAEN Digitizer Offer

	Model ⁽¹⁾	Form Factor	N. of ch. ⁽²⁾	Max. Sampling Frequency (MS/s) ⁽²⁾	N. of Bits	Input Dynamic Range (Vpp) ⁽²⁾	Single Ended / Differential Input	Bandwidth (MHz) ⁽²⁾	Memory (MS/ch) ⁽²⁾
	x720	VME	8	250	12	2	SE / D	125	1.25 / 10
		Desktop/NIM	4/2				SE		
	x721	VME	8	500	8	1	SE / D	250	2
	x724	VME	8	100	14	0.5 / 2.25 / 10	SE / D	40	0.5/4
		Desktop/NIM	4/2				SE		
	x730	VME	16	500	14	0.5 - 2	SE	250	0.64/5.12
	NEW	Desktop/NIM	8	500	14	0.5 - 2	JE	250	0.04/ 5.12
	x731	VME	8-4	500 - 1000	8	1	SE / D	250/500	2/4
	x740	VME	64	62.5	12	2/10	SE	30	0.19/1.5
		Desktop/NIM	32						
	x751	VME	8-4	1000 - 2000	10	1	SE/D	500	1.8 - 3.6 / 14.4 - 28.8
		Desktop/NIM	4-2				SE		
	x761	VME	2	4000	10	1	SE / D	1000	7.2 / 57.6
		Desktop/NIM	1				SE		
	CION x742	VME	32+2	5000 ⁽⁴⁾	12	1	SE	500	0.128 / 1
1111		Desktop/NIM	16+1						
	x743	VME	16	3200 ⁽⁴⁾	12	2.5	SE	500	0.007
	ຈັນ NEM	Desktop/NIM	8						

Reproduction, transfer, distribution of part or all of the contents in this document in any form without prior written permission of CAEN S.p.A. is prohibited

16

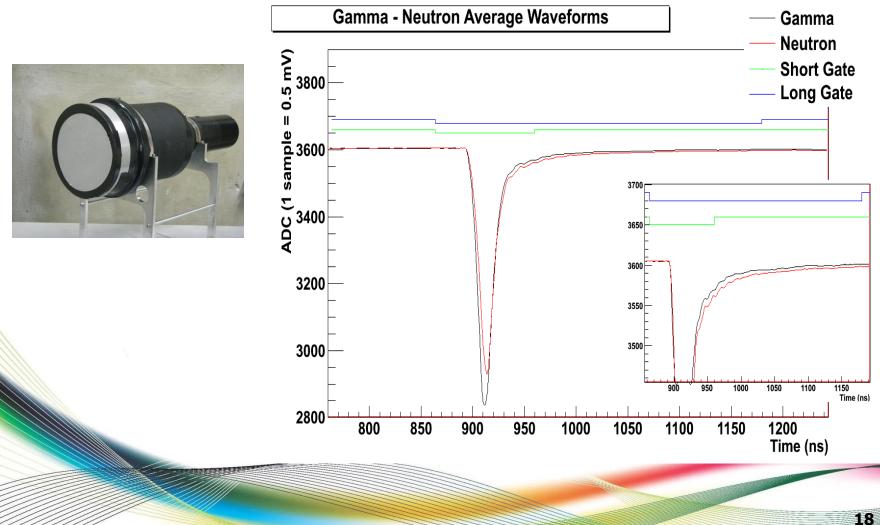
Fast ADC Technology

• FADC

- Solutions for multiple experimental applications
- Sampling frequency: from 62.5 MHz to 4 GHz
- Resolution up to 14 bits

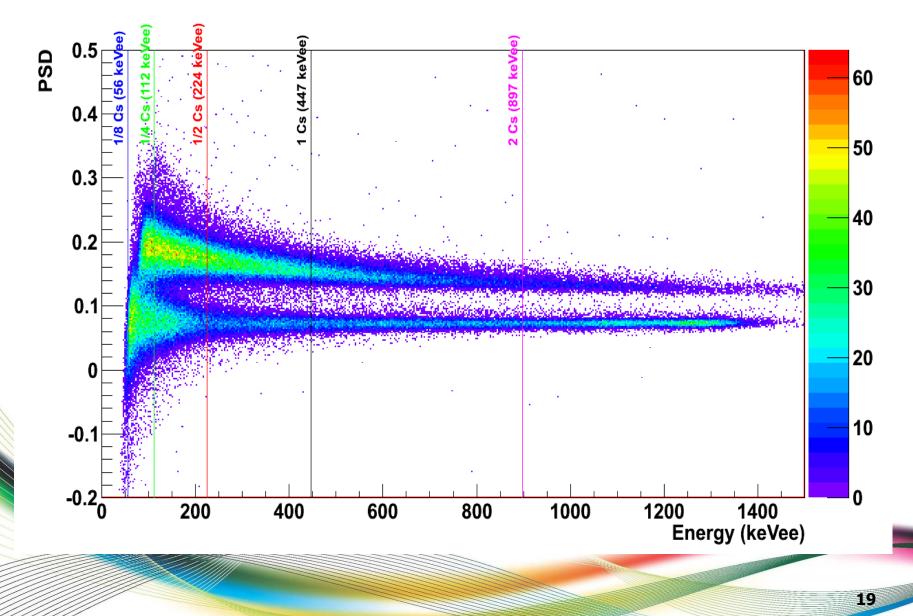
- Latest waveform digitizer: x730
 - Up to 16 channels in one board
 - 500 MS/s, 250 MHz analog bandwidth, with 14 bits dynamic
 - Double input dynamic range: 0.5 and 2 Vpp software set
 - Available in VME, NIM and Desktop form factors
 - Two firmware algorithms available

17

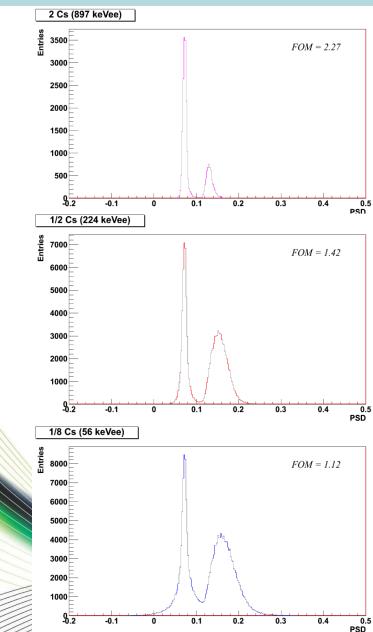


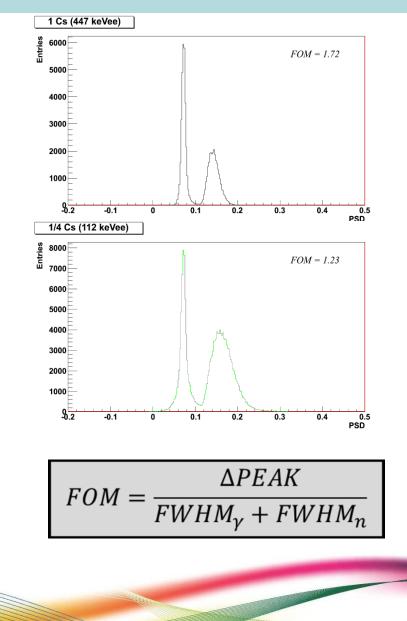
γ -n Discrimination: test results (I)

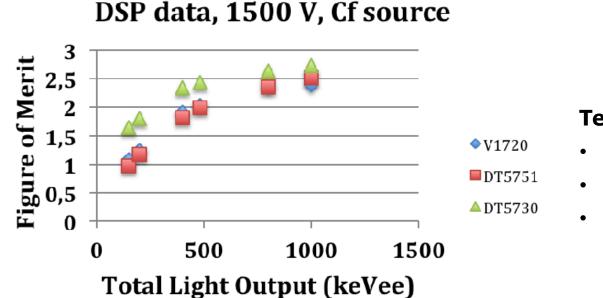
Detector: BC501A 5x2 inches,


PMT: Hamamatsu R1250

Board: DT5720 with DPP-PSD



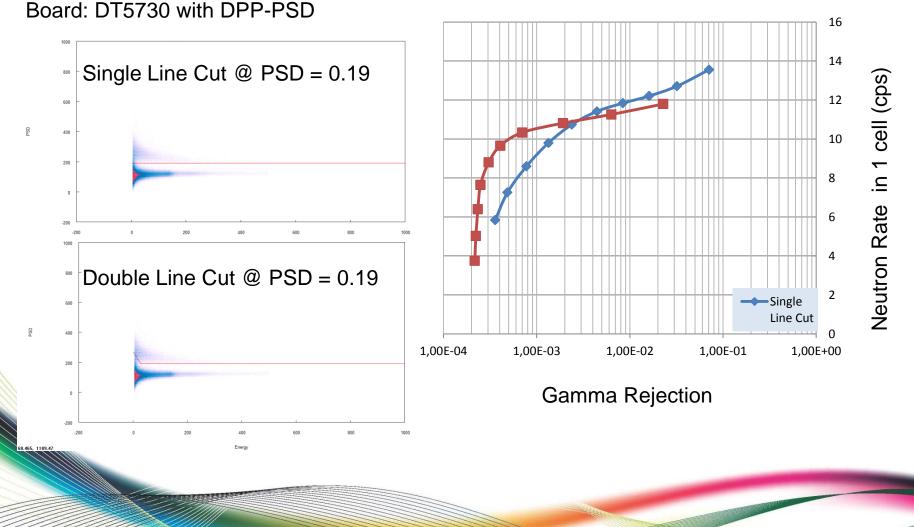

γ -n Discrimination: test results (II)


γ -n Discrimination: test results (III)

20

Tested families:

- **x720** (12 bit @ 250MS/s)
- x751 (10 bit @ 1GS/s)
- **x730** (14 bit @ 500MS/s)

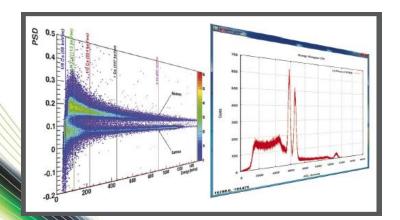

21

Reproduction, transfer, distribution of part or all of the contents in this document in any form without prior written permission of CAEN S.p.A. is prohibited

 γ Rejection Test

Detector: EJ309, volume ~ 1 liter PMT: 9821FLB ET Enterprices

22



Integrated solutions – 1

DT5790

Dual Charge-to-Digital Converter for Pulse Shape Discrimination

- Dual digital charge-to-digital converter based on 12-bit 250 MS/s FlashADCs
- Two HV power supply outputs rated up to $\pm 4 \text{ kV}/3 \text{ mA}$
- Two DB9 connectors for preamplifier power supply
- USB and Optical Link communication interfaces
- Applications:
 - γ-n Discrimination
 - Spectroscopy with scintillators

23

Integrated solutions - 2

EDEN European Funded Project

Baggage scanning to identify fissile nuclear material

Acquisition system for ³He or Boron tubes

- 1 VME8004B Crate (Custom design)
- 1 V2718 VME Optical Link bridge
- 2 V6533 HV Boards
- 1 V1495 General Purpose Board + 2 x 8 NIM/TTL I/O
- Control software

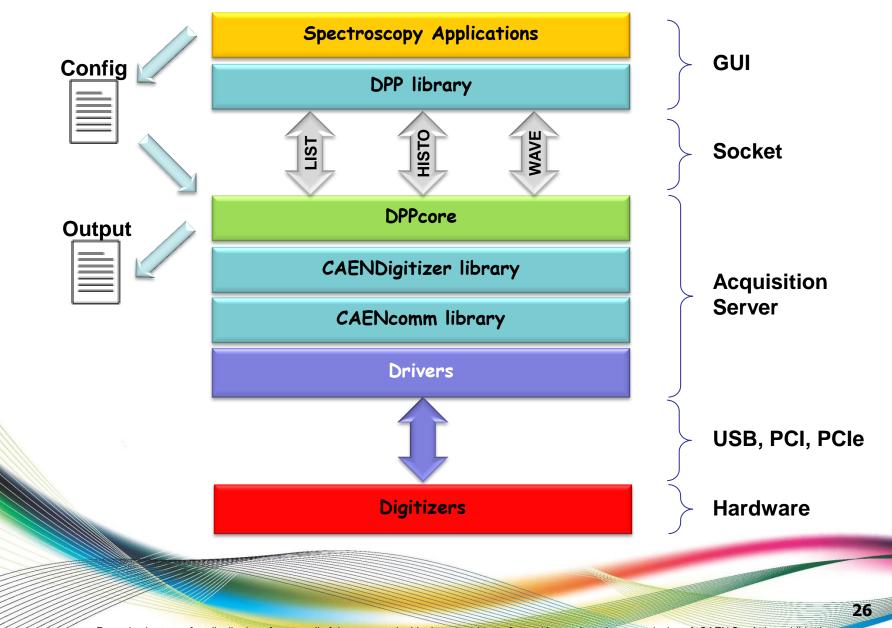
VME-USB bridge Detector bias Time stamp recording

24

Software for the digitizers

- CAEN provides a wide range of software tools to configure and to control the data acquisition
 - Linux and Windows OS compatible (32 and 64 bits)
 - Free download
- **DRIVERS** for the communication channel:
 - CONET2 optical link
 - VME bus
 - USB

• LIBRARIES:


- C and LabView
- Demo and examples available for developers

• **READOUT SOFTWARE**

Medium and high level tools to manage the configuration and the data acquisition

25

CAEN Tools for Discovery

- Waveform digitizers are flexible and compact tools suitable for diverse applications
- On board data processing
 - replace at the same time different modules of a typical analog data acquisition chain
 - adapt to high rates
 - operate data reduction
 - may integrate event selection logic
- Fully exploit detector performances, comparable (and sometime better) with (than) analog acquisition chains

Backup

Power supply Systems

Compatibility

100% Compatible with all the power supply boards developed for the previous generation mainframes SY1527/SY2527

- Fully equipped experiment version
- 19" wide, 8U-high Euro-mechanics rack; depth: 720 mm, weight : 13kg
- 16 slots to house boards, distributors and branch controller
- Communications via Gigabit Ethernet and via Wi-Fi (optional)
- Local control via 10.4" color touchscreen LCD (optional)
- Fast, accurate setting and monitoring of channel parameters
- Modular and expandable power supply (up to 4 kW)
- Forced air cooling

- Small scale experiment and laboratory version
- 19" wide, 4U-high Euro-mechanics rack; depth: 700 mm
- 6 slots to house boards, distributors and branch controller
- Communications via Gigabit Ethernet and via Wi-Fi (optional)
- Local control via 5.7" colour touchscreen LCD (optional)
- Fast, accurate setting and monitoring of channel parameters
- Modular and expandable power supply (up to 1800 W)
- Forced air cooling

System Philosophy

Modularity

- Chassis: SY4527, SY5527, SY4527LC, SY5527LC
- CPU Units: Basic, Advanced, Full
- Power Units: Primary, Boosters
- Accessories: LCD Touchscreen, Wi-Fi, Advanced SW

Connectivity

 Control based on new CPU modules either Remote via Ethernet and Wi-Fi or Local via touchscreen LCD

Usability

 New Software tools have been designed to set and monitor all the parameters. Advanced features for Alarming, Logging and Scripting

Compatibility

The new backplane is fully compatible with SY1527/2527 HV/LV Boards and Branch Controllers

Modularity

All the systems share the same Primary Power Supply, the same Boosters and the same CPUs

Connectivity

- ✓ A4528 Built-in industrial PCs
 - Ethernet (TCP/IP) connection
 - Wireless connection through Wi-Fi USB dongle
- ✓ Local control via Touchscreen LDC
- ✓ Control software for Linux, Windows and Tablet PC
- ✓ User profiles & View Customization

A4528 CPU: available versions

✓ Basic version

- communication interfaces
- RESET control
- INTERLOCK control
- Status LEDs

✓ Advanced version adds:

• beam handshake management connectors (CH-ON, GEN, VSEL, ISEL)

✓ Full version adds:

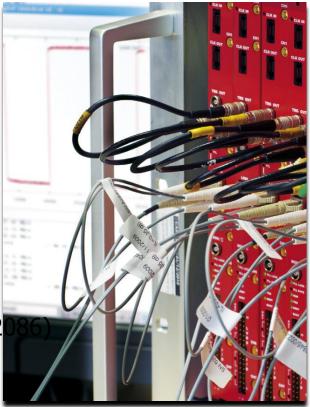
- complete set of panel connectors
- ENABLE control section
- Front panel Fan speed control.

Usability

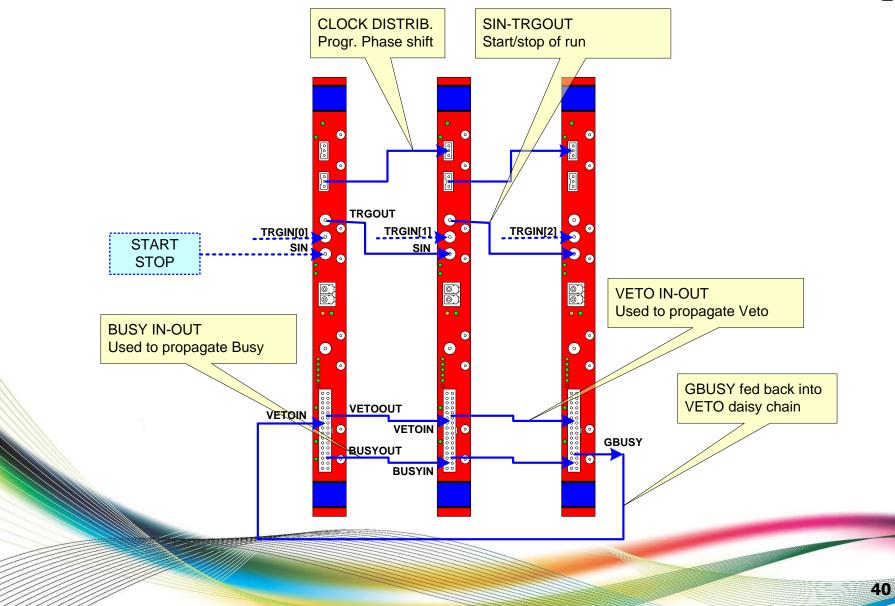
GECO2020

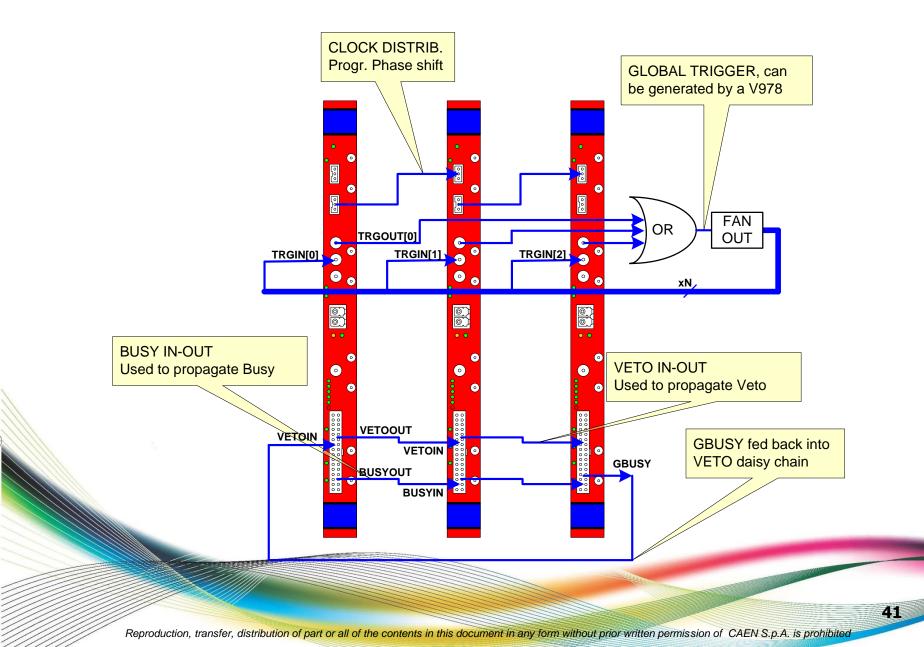
General Control Software for CAEN HV Power Supplies

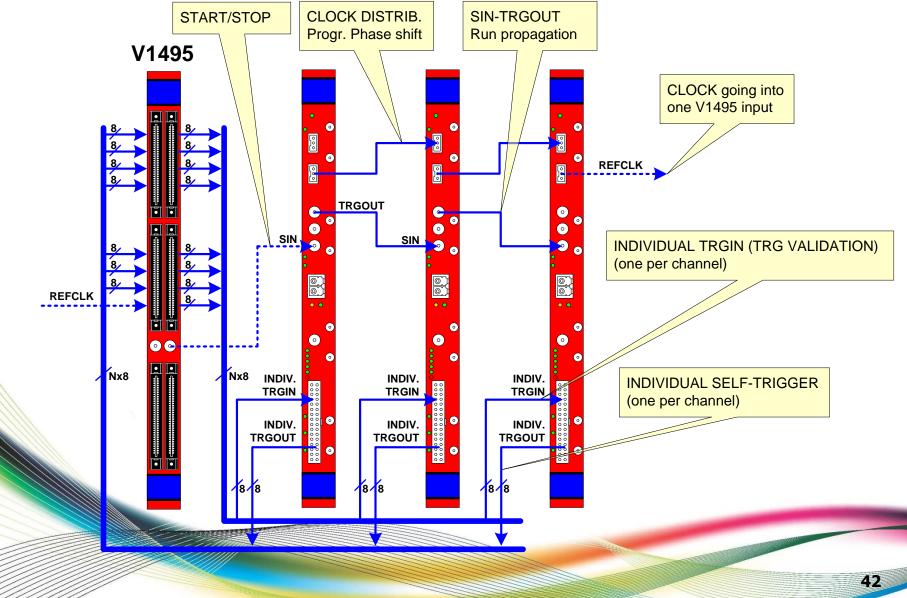
- ✓ Innovative GUI
- Dashboard capability: allows to manage all the CAEN Power Supplies in any form factor
- ✓ Supports Linux and Windows
- ✓ Handles all the communication links: Ethernet & Wi-Fi, USB, Optical Link


TEM	System							EDARDS		
System Disconnect Configure	Custom	Name	10Set	V0Set	IMon	VMon	Pw	Status 📤	* Board09 - A1536	-[100]
SY4527 Universal Multicounnel Power Supply System 10.0.7.5	09.000	HANNEL00	900.00 uA	100.0 V	0.10 uA	0.0 V	Off		A1536 Hodule BdStatus HVMax Temp	
	09.001 C	CHANNEL01	900.00 uA	100.0 V	0.15 uA	0.0 V	Off			
	09.002	CHANNEL02	900.00 uA	100.0 V	0.00 uA	0.0 V	Off			
SETTINGS	09.003	CHANNEL03	900.00 uA	100.0 V	0.20 uA	0.0 V	Off			3523.00 V
ADVANCED FEATURES	09.004	CHANNEL04	900.00 uA	100.0 V	0.10 uA	0.0 V	Off			
	09.005	CHANNEL05	900.00 uA	100.0 V	0.10 uA	0.0 V	Off		* Board14 - A1511	
RESSIONS CRATE TECH SYS MAP DIFO INFO RESET CENSIGN KILL CLEAR FLAG OFG KILL ALARM	09.006	CHANNEL06	900.00 uA	100.0 V	0.05 uA	0.0 V	Off		A1511 Module	
	09.007	CHANNEL07	900.00 uA	100.0 V	0.00 uA	0.0 V	Off			
	09.008	CHANNEL08	900.00 uA	100.0 V	0.10 uA	0.0 V	Off			
Fan0 ₩ 0 Fan1 ₩ 0 Fan2 ₩ 1752 Fan3 ₩ 1644 Fan4 ₩ 1788 Fan5 ₩ 1752	09.009	CHANNEL09	900.00 uA	100.0 V	0.15 uA	0.0 V	Off		BdStatus HVMax Temp	515.00 \ 25.00 °C
	09.010	CHANNEL10	900.00 uA	100.0 V	0.00 uA	0.0 V	Off			
	09.011	CHANNEL11	900.00 uA	100.0 V	0.15 uA	0.0 V	Off			
ibolicName CAENDevel	09.012	CHANNEL12	900.00 uA	100.0 V	0.10 uA	0.0 V	Off			
anSpeed LOW MID HI	09.013	CHANNEL13	900.00 uA	100.0 V	0.00 uA	0.0 V	Off	_		
Fan0 9 1644 FanStat Fan1 9 1823	09.014	CHANNEL14	900.00 uA	100.0 V	0.10 uA	0.0 V	Off			
National Anna 2 9 1752	09.015	CHANNEL15	900.00 uA	100.0 V	0.10 uA	0.0 V	Off			
	09.016	CHANNEL16	900.00 uA	100.0 V	0.15 uA	0.0 V	Off			
	09.017	HANNEL17	900.00 uA	100.0 V	0.15 uA	0.0 V	Off			
	09.018	CHANNEL18	900.00 uA	100.0 V	0.05 uA	0.0 V	Off			
	09.019	CHANNEL19	900.00 uA	100.0 V	0.10 uA	0.0 V	Off			
	09.020	CHANNEL20	900.00 uA	100.0 V	0.10 uA	0.0 V	Off			
	09.021	HANNEL21	900.00 uA	100.0 V	0.05 uA	0.0 V	Off			
	09.022	HANNEL22	900.00 uA	100.0 V	0.15 uA	0.0 V	Off			
	09.023	CHANNEL23	900.00 uA	100.0 V	0.10 uA	0.0 V	Off			

Board Synchronization

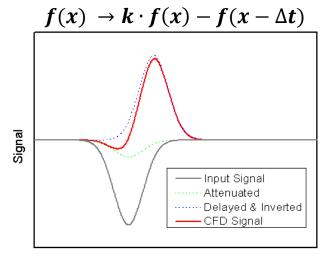

- Basics
 - Clock phase-alligned
 - Clock input/output, programmable phase adjust
 - Same time reference
 - Time stamp reset, input/output connectors
 - Trigger propagation and/or correlation
 - Possible use of external logic units
 - Readout synchronization and event alignment
 - Input/output to propagate BUSY or VETO signals
- Software demo:
 - **SyncTest** source code, ANSI C
 - Application Note with simple examples (AN2)
- Some examples follow

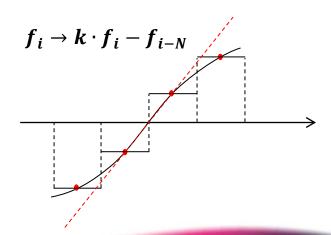

39


Multi-board Synchronization: example

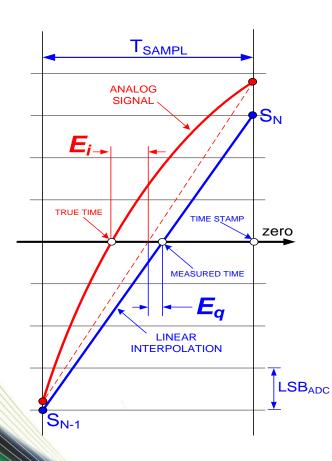
© CAEN Multi-board Synchronization: example 2

© CAEN Multi-board Synchronization: example 3




Digital CFD

- Best timing resolution may be obtained with interpolation algorithms
 - Need to read full waveforms
 - High data transfer rate compared to traditional TDC
- As for the analog systems, high precision timing may be obtained with Constant Fraction Discriminators
 - solve the "amplitude walk"
- On-line FPGA processing may help, but the algorithm has to be simple
 - 1. implement the CFD with online algorithms
 - 2. find the zero crossing with resolution of the sampling clock
 - 3. interpolate the points to improve significantly the result



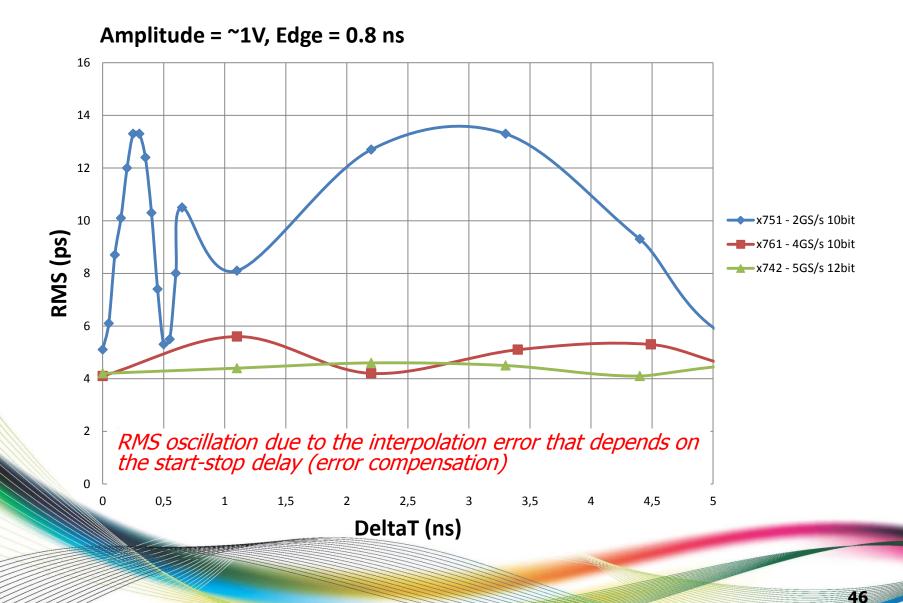
Reproduction, transfer, distribution of part or all of the contents in this document in any form without prior written permission of CAEN S.p.A. is prohibited

44

There are two types of error (excluding noise): Quantization error **Eq** Interpolation error **Ei**

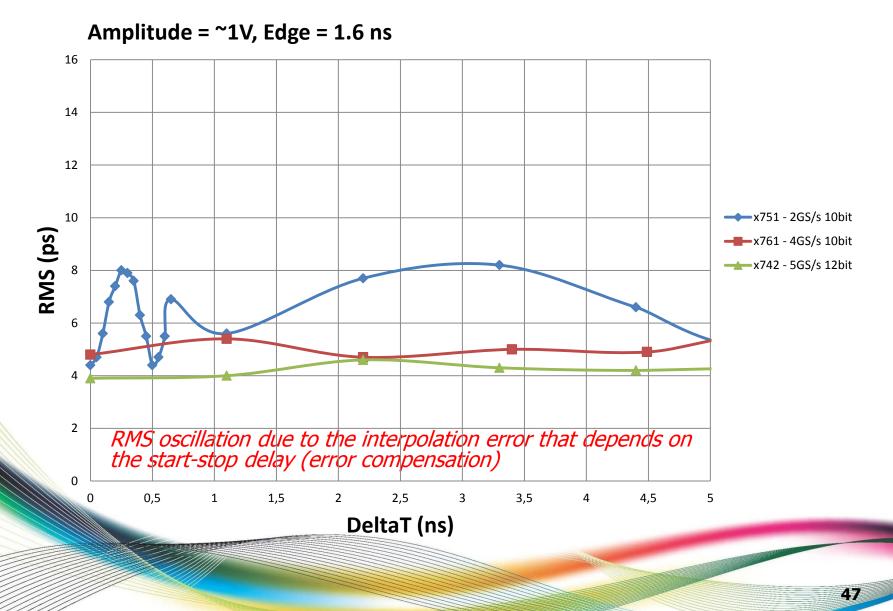
Uncertainty

• Slow signals (Rise Time > 5*Ts): Ei < Eq


Approximation to a straight line is good; resolution proportional the number of bits of the ADC and to the rise time

Fast signals (Rise Time < 5*Ts): Eq < Ei</p>

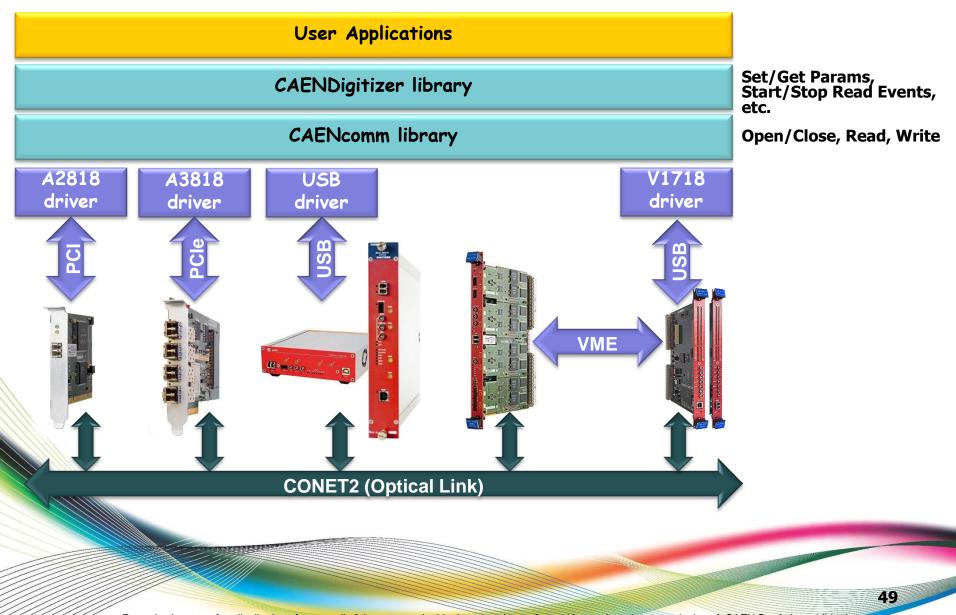
The geometric error due to the interpolation varies with the position of the signal respect to the clock, thus giving non gaussian peaks and other non-physical effects.


45

© CAEN Tools for RMS vs DeltaT @ 0.8ns Rise Time, 1V

RMS vs DeltaT @ 1.6ns Rise Time, 1V

© CAEN Beta test with x730 (14 bit, 500MS/s)


Amplitude = 1 V 1000 RiseTime 10 ns RiseTime 5 ns RiseTime 2.5 ns 100 RMS (ps) 10 0,2 0,6 0,8 1,2 0,4 1 1,4 1,6 1,8 DeltaT (ns)

Reproduction, transfer, distribution of part or all of the contents in this document in any form without prior written permission of CAEN S.p.A. is prohibited

48

Libraries and drivers

