

CANDOR Detector

<u>Overview</u>

- Candor Detector Array
- How a Scintillator works and Challenges
- Scintillator Detector Optimization
 - Frame design
 - Testing
 - Compound
 - Reflector
 - SiPM
 - Fiber Loop

CANDOR Detector Array

CANDOR How it works

Neutron Detection

6LiF:ZnS(Ag)

- The neutron is captured by 6Li in the scintillator (6Li (n,α) 3H reaction
- The alpha and tritons ionize the ZnS(Ag) and produce blue light photons.
- Blue light photons are then absorbed by the fluorescent dye in the WLS fibers and re-emitted as green light photons, which are then conducted down the fiber to the SiPM.

CANDOR Detector

Challenges or things to be optimized

- Neutron Capture Sensitivity: The likelihood of interaction between an incident neutron and a target nucleus (6Li).
- Stopping power, the ability to stop all the neutrons that it sees.
- Measurable Signal: The scintillator is opaque to its own scintillation light.
- Gamma Rejection: The scintillators are inherently sensitive to gamma ray photons.
- The silicon photomultipliers are subject to thermally induced noise.
- Scintillation decay time (double counting).

CANDOR Scintillator Testing

All testing relative to HE3

- Stopping power-Neutrons stopped
- Sensitivity- Neutrons counted
- Light spectrum- the brightness of events counted

CANDoR Detector Development

Frame Design

First frames had few fibers with spacing between fibers.

These were complicated frames to produce.

And labor intensive to thread the fibers.

Poor sensitivity

CANDOR Detector Development

Fiber Spacing Changes Light Collection

- Neutron events happen most near the surface of the detector.
- Due to the opaqueness of the compound some of these events are unlikely to be captured.
- We are losing events in area where they happen MOST!

CANDoR Detector Development

Solution-

More Fibers More Light

- We eliminate the dead spots by filling the frame with fibers
- Win-Win-Frames are easier to produce and no more fiber threading thru small holes
- Labor is easier for the detector
- Fibers are relatively cheap

CANDOR Scintillator Compound

Scintillation Compound

- Three components- ⁶LiF, ZnS(Ag), & binder
- High stopping power with ⁶Li density
- High Light output with ZnS(Ag) density
- Binder is transparent
- Grain Size of the ZnS(Ag)
- Clustering of ZnS(Ag)
- Ratio of components to one another
- 1:2:0.6 vs 1:3:0.6

CANDOR Scintillator Compound

CANDOR Detector Reflectors

Reflectors increase the light energy
But the Type of reflector matters

SiPM Silicone Photo-Multipliers

- Dark noise Rate- High dark count becomes harder to distinguish between the tail and noise
- PDE-Photo Detection Efficiency
- Recovery time
- Rise time
- After Pulsing, Delay Cross Talk, Cross Talk

Luckily Sensl and Hamamatsu as well as other manufactures are improving these properties for us.

Discriminators

Using the Pulse shape vs the pulse peak

Typical waveform events measured with a short recovery time diode

- A. Primer Layer –ZnS w/Nickel Killer
- B. Compound Layer
- C. ZnS (no Li)
- D. Reflector Alonad
- E. Reflector Vikuiti

CANDOR Detector

The Final Step Cutting the Fiber loop

Conclusions

- Mechanical design, more fibers more light
- Optimal thickness for the correct compound
- Compound advances
- Discriminator improvement using Pulse shape
- Addition of reflectors to keep light in detector
- Ease of manufacturing
- Now producing >90% vs 45% last year

CANDOR

QUESTIONS?

