(Neutron Guide) shielding basics

Jeremy Cook Physicist, Research Facility Operations Group NIST Center for Neutron Research

Guide shielding basics Outline

- What do we shield and why?
- Personnel dose rates and regulatory limits
- Principal types of ionizing radiation encountered in neutron guide shielding
- How to shield different types of radiation
- Commonly-encountered shielding types
- Miscellaneous

Guide shielding basics Why shielding?

- Ionizing radiations produced
 - 1) Directly from the source
 - 2) From neutron interactions in materials in the beam
 - 3) Naturally from the environment
- Radiation shielding usually required for some or most of the beam from the source to the instrument
 - Reduce exposure to personnel (cell damage)
 - Reduce instrumental background (false counts from radiations other than the neutrons scattered from the sample)

Guide shielding basics Radiation dose limits/ averages

NRC (Nuclear Regulatory Commission, US)

- Occupational Dose Limit (radiation worker) = 5 rem/yr (5000 mrem/yr, 50 mSv/yr)
- General public dose limit at facility = 100 mrem/yr =1mSv/yr
- Average dose to US public = 360 mrem/yr = 3.6mSv/yr
- Average dose to NIST researcher ~ 50 mrem/yr =0.5mSv/yr (100x less than ODL)
- Want to avoid *"radiation areas"* in guide hall (radiation area \geq 5 mrem/h =50µSv/h) <u>preferably much less</u>
- Regulatory limits (and especially average doses) vary somewhat from country to country and geographical location

Guide shielding basics Radioactive sources and environmental radiaton

Guide shielding basics Principal radiations encountered in neutron guides

- Slow (thermal/cold) neutrons: The ones we want to transmit to instruments – very high *in-beam* dose rate, very low outside of borated substrate guides *except* at scattering sources (windows, filters, monochromators etc.)
- **Fast neutrons**: Directly from source mainly, but also from (n,xn'), (γ,n) reactions etc.)

Gamma rays

- Directly from source
- "Prompt" gammas from neutron absorption in materials
- Emitted from radioactive sources produced by neutron absorption in materials in beam (e.g. aluminum windows: ²⁸Al produced by n absorption in ²⁷Al β-decays to ²⁸Si with emission of 1.78MeV gamma)
- x-rays Usually easily stopped by guide shielding
- Scharged particles: β (electrons), α (⁴He nuclei)

Guide shielding basics Principal radiations encountered in neutron guides

- Charged particles β (electrons), α (⁴He nuclei) not usually a concern behind shielding if radioactive source is (a) not fluid or (b) confined because:
 - Charged particles short ranged even in air
 - Most β stopped by mm of Al, α stopped by sheet of paper (or skin)
 - Very low risks associated with ⁴¹Ar inhalation (T_{1/2}=1.8h, β, γ emitter) produced from neutron absorption in ⁴⁰Ar in air

Guide shielding basics ⁴¹Ar example (not a shielding problem per se)

- ⁴¹Ar is β -radioactive with (T_{1/2}=1.8h) from neutron absorption in ⁴⁰Ar in air
- Example: Study for Neutron Lifetime experiment (guide NGC) for worst-case leak in 8.35m long beam chamber (1 Atm air, beam ON many×T_{1/2} i.e., ⁴¹Ar concentration at saturation level)

Results:

- Setimated 41µCi ⁴¹Ar (in 49 liters) at saturation ($8.4 \times 10^{-4} \mu$ Ci/ml)
- NRC 10CFR20 Derived Air Concentration (DAC) value for inhalation is $3 \times 10^{-6} \mu$ Ci/ml
- HOWEVER
 - DAC=Concentration of a given radionuclide in air which, if breathed by the reference man for a working year of 2000 hours under conditions of light work (with an inhalation rate of 1.2 cubic meters of air per hour)
 - DAC value is based on annual integrated gamma dose rate limits

DAC assumes semi-infinite cloud submersion

Guide shielding basics ⁴¹Ar example

- Release 49 liters to semi-infinite cloud dilution and exposure time wrt DAC render ⁴¹Ar exposure **insignificant** from regulatory point of view (similar for leaking guides)
- No guide hall beam experimental proposals at NCNR usually require ⁴¹Ar safety reviews for air-leak scenarios
- Try to avoid long, confined, air-filled beam paths in guide as much as possible (but more for transmission performance and (borated glass) guide longevity than for ⁴¹Ar safety reasons)

Guide shielding basics Means of protection from neutron guide radiation

Limit time of exposure Increase distance from source SHIELDING

Guide shielding basics Gamma rays

- Usually main source of radiation from guides outside of the shielding (usually what we are measuring with yellow Victoreen survey meters in experimental areas)
- Originate from neutron capture in:
 - Reflecting mirror/ supermirror elements (e.g. Ni, Ti) note supermirror thickness increases ~ m³ high m guides can lead to significant shielding challenges
 - Guide substrate elements
 - Non-borated (soda lime) glass (e.g. Na, Si capture)
 - Borated glass (mainly 478 keV from ¹⁰B(n,α)⁷Li reaction)
 - Aluminum, Nickel, Copper, steel
 - Vacuum windows (Al, Mg, Be, sapphire etc.)
 - Crystal filter materials
- From radioisotopes produced from neutron absorption (e.g. ²⁸Al, ⁶⁵Zn (in borated glass) etc.)
- Often enhanced shield thicknesses required around V-polarizers with silicon wafers, filters (e.g. sapphire), velocity selectors or choppers with Gd₂O₃, etc., which produce energetic capture gamma rays

Guide shielding basics Capture gamma yields (n,γ) reaction

Prompt gammas per neutron capture by γ energy group

				Energy group (MeV)										
		σ_{γ} (b)	0-1	1-2	2-3	3-4	4-5	5-6	6-7	7-8	8-9	9-10	10-11	
ſ	H	3.32E-1	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
	Li	3.63E - 2	0.1242	0.0491	0.8933	0.0000	0.0000	0.0000	0.0107	0.0402	0.0000	0.0000	0.0000	
	Be	9.20E-3	0.2552	0.0000	0.2415	0.4629	0.0000	0.0201	0.6290	0.0000	0.0000	0.0000	0.0000	
	В	(1.03E-1	0.0000	0.0000	0.0000	0.0000	1.1014	0.0000	0.3950	0.4785	0.0000	0.0000	0.0000	
	С	3.37E - 3	0.0000	0.2975	0.0000	0.3240	0.6827	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
	Ν	7.47E - 2	0.1302	0.0000	0.5168	0.4683	0.2284	0.1969	0.2465	0.0000	0.0000	0.0000	0.0000	
	O''	2.70E - 4	1.0000	0.8200	0.8200	0.1800	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
	Na	4.00E-1	0.9267	0.2047	0.7265	0.6536	0.0323	0.0633	0.2244	0.0000	0.0000	0.0000	0.0000	
	Mg	6.30E - 2	0.5963	0.6875	0.6404	0.9583	0.0662	0.1077	0.1157	0.0372	0.0474	0.0075	0.0000	
	Al	2.30E-1	0.2751	0.0877	0.3125	0.2602	0.3709	0.0812	0.1029	0.3874	0.0000	0.0000	0.0000	
	Si	1.60E-1	0.1172	0.1328	0.3193	0.8266	0.6378	0.0450	0.1361	0.0704	0.0203	0.0000	0.0000	
İ	P	1.80E-1	0.4066	0.5411	0.5213	0.5448	0.2690	0.1289	0.1809	0.0789	0.0000	0.0000	0.0000	
	S	5.20E - 1	0.7555	0.0000	0.7718	0.3642	0.1794	0.6348	0.0000	0.0391	0.0266	0.0000	0.0000	
	Cl	3.32E + 1	0.3130	0.7353	0.3015	0.2099	0.1379	0.1346	0.3773	0.2037	0.0299	0.0000	0.0000	
	K	2.10E + 0	0.5435	0.4671	0.5927	0.3855	0.2617	0.3736	0.0352	0.0610	0.0000	0.0000.	0.0000	
	Ca	4.30E-1	0.2401	0.9349	0.5187	0.1711	0.2303	0.1254	0.4384	0.0216	0.0000	0.0000	0.0000	
	Ti	6.10E+0	0.3097	0.8089	0.0695	0.1249	0.1114	0.0239	0.8495	0.0030	0.0019	0.0000	0.0000	
	$\mathbf{\ddot{V}}^{a}$	5.04E + 0	0.3837	0.2486	0.1335	0.0591	0.0877	0.3158	0.3947	0.1972	0.0000	0.0000	0.0000	
	\mathbf{Cr}	3.10E+0	0.4051	0.1607	0.2067	0.0922	0.0421	0.1103	0.1189	0.2461	0.3766	0.1097	0.0000	
	Mn	1.33E+1	0.1750	0.1242	0.2421	0.1542	0.1705	0.3134	0.1076	0.3799	0.0000	0.0000	0.0000	
	Fe	2.55E + 0	0.2783	0.2476	0.0954	0.1132	0.1122	0.1093	0.1012	0.5886	0.0082	0.0415	0.0011	
	Co	3.72E + 1	0.9374	0.2054	0.1594	0.1784	0.1566	0.3362	0.3467	0.1139	0.0000	0.0000	0.0000	
	Ni	4.43E+0	0.2616	0.0659	0.0605	0.0365	0.0370	0.0745	0.1704	0.1404	0.5899	0.0000	0.0000	
1	~				0 0 4 F F	0.0400	0 1010	0 1010	0 1001	0 0105	0 0000	0 0000	A AAAA	

Note this is (n,γ) crosssection for boron which is v. small wrt (n,α) crosssection so very small fraction of these wrt 478keV gamma from (n,α)

```
NST Center for
Neutron Research
```

Guide shielding basics Neutron capture in **boron**

Most gammas from neutron absorption in boron are from the ${}^{10}B(n,\alpha)^{7}Li$ reaction (E_{γ} =0.478 MeV, Q=2.79 MeV)

0.478 MeV gammas (yield=0.93/capture on average): <u>Relatively easy to</u> shield

• Local heating from stopping of α and ⁷Li nucleus (depositing energy Q) in surrounding material = 4.47×10^{-8} rads/absorption (4.47×10^{-13} J/g/absorption)

A few (~10⁻⁶ per thermal neutron absorption) fast neutrons (up to ~16MeV) emitted (from charged particle interactions in the material)

Photon (gamma-ray) absorption coefficient (cross-section)

 μ for shield materials (photon cross-section)

1/10th value thicknesses

1/10th value thicknesses for shield materials "No symbols" are "No buildup": Values are simply=ln(10)/ μ

Useful "rule of thumb" for gamma-ray shielding

With the exception of hydrogen, **photon cross-section divided by material mass density is approximately constant** in the energy range of interest for determining the minimum shield thickness

Center for

Neutron Research

Useful "rule of thumb" for gamma ray shielding

$$T \approx \exp(-\mu x) = \exp\left(-\frac{\mu}{\rho}\rho x\right) \approx \exp(-K\rho x)$$

Therefore if $\frac{\mu}{\rho}$ approximately independent of shield material, shields with $\rho_1 x_1 = \rho_2 x_2$ have approximately equal transmission

Whatever the shield material, you need approximately a constant mass of shield

For example: If a Pb gamma shield with ρ =11.35gcm⁻³ is to be replaced by a concrete shield with ρ =2.35gcm⁻³, the latter should be approximately 5× thicker

Guide shielding basics Thermal (slow) neutron shielding

- Task: Stop thermal neutrons that will not reach sample
- Easy to shield with <u>relatively thin (</u>~mm thick) materials containing elements with high thermal neutron absorption cross-sections (e.g.):
 - B (767b)/ ¹⁰B (3837b)
 - Li (71b)/ ⁶Li(940b)
 - Cd (2520b)
 - Gd (48890b) etc.
- Thermal neutron shielding should usually be *first line of shielding* in a mixed thermal neutron, gamma, fast neutron field (avoids unnecessary activation/ gamma production in following shield materials)

Guide shielding basics Thermal (slow) neutron shielding

Borated materials (Borkron, borofloat glass, borated Al, Boral, Boroflex etc.)

- Gammas relatively easy to shield
- Permits use of borated materials inside guide shields (e.g. beam shutters, beam masks)
- Borkron, borofloat substrate guides: **Unreflected thermal neutrons 100% absorbed in glass**
- Avoid borated glass in high lifetime neutron fluences (>~10¹⁷n/cm² on surface embrittlement due to He defects/tracks in structure from ¹⁰B(n,α)⁷Li reaction)
- For evacuated guides with gaps, mask **exposed ends** with borated Al (EDM) reduce risk of implosion
- Use borated absorbers to limit neutron scattering (from windows, crystal filters etc.) into shields or support structures (reduces secondary gamma production (e.g. 2.2MeV H capture gamma in hydrogenous shields) and materials activation)
- Borated shield materials include:
 - B₄C (hot-pressed or cast in epoxy)
 - boroflex

DENIM VIII

- borated Al (now hard to find!)
- Boral (B4C and aluminum composite)
- borated polyethylene (various B concentrations)
- borated wax (borax) not used any more in steel weldments at NCNR (acidity, boron-rich separation)
- boron nitride etc.

Guide shielding basics Thermal (slow) neutron shielding

- ⁶Li-containing materials LiF scintered tile, lithiated polymer "Lithoflex ", lithiated polyethylene, also lithiated glass etc.
 - ⁶Li has very low gamma production, BUT
 - ⁶Li-enriched materials are strategic, expensive, difficult to obtain in large quantities
 - Tritium contamination when exposed to neutrons (via ⁶Li(n, α)³H reaction)
 - Emits high energy (up to ~16MeV) (hard-to-shield) neutron spectrum (~10⁻⁴ per thermal neutron absorbed)
 - Can rarely justify their use inside guide shielding over borated materials
- Cadmium (Cd) not good for > eV neutrons ("Cd cutoff" (cross-section drops dramatically) above 0.3eV), produces high-energy gammas (difficult to shield)
- Gadolinium (Gd) very large thermal absorption cross-section (can be thin) but produces highenergy gammas (difficult to shield). Gd₂O₃ often found in chopper disks, velocity selectors, etc.
- Non-borated substrate guides:
 - May require surrounding with borated absorber especially close to source- limit activation in surrounding structures, secondary gamma production etc.

Guide shielding basics Fast neutrons

- Direct from source (usually a few % of total flux)
- Biological dose rate of fast ns in beam can be **comparable to thermal neutron beam**
- Much harder to shield than thermal/cold neutrons
 - Slow them down first! (moderate)
 - >1 MeV: Reduce energy by *inelastic scattering* (W, Fe, Pb good) (spallation source neutrons usually heavy use of steel shields around target)
 - IMeV: Slow down by elastic scattering: <u>Hydrogen is best</u> use high number density hydrogenous materials – polyethylene (7.9e+22 cm⁻³ H), paraffin wax (8.3e+22 cm⁻³ H), H₂O (6.7e+22 cm⁻³ H), also Masonite (~4.8e+22 cm⁻³ H), concrete (< 1e+22 cm⁻³ H, depending on hydration), etc. (bulky tend to need 10's of cm of higher H materials for MeV neutrons)
 - When slowed down (thermalized) neutrons are **readily absorbed in thermal neutron absorbers**

Guide shielding basics Fast neutrons

Guide shielding basics Shielding of profiled and curved guides

Guide shielding basics Shielding of profiled and curved guides

- Losses in guides (lead to gamma production supermirrors, substrates) see "simulations" presentation
 - Can increase towards ends of focusing sections or in curves of guides (sometimes require more shielding at ends than in middle)
 - Also around crystal filters, polarizers etc.

- **Regular concrete** shielding (relatively inexpensive, ρ^2 .35 gcm⁻³ bulky, requires painting to avoid dust, chips)
 - 7.5m thick wall between reactor hall and guide hall is reinforced concrete (contains penetrations for guides NG1 to 7)
 - Until now guide penetrations had oil-filled casings to reduce radiation streaming around exterior of guides
 - NCNR uses regular poured concrete in room between reactor hall and guide hall for guides NGA-D
 - Also some concrete shields near magnetically sensitive areas of Neutron Spin Echo instrument

DENIM VIII

2019

- HCON Concrete mixed with e.g.
 - Magnetite
 - BaSO₄ (barytes)
 - Magnetite and steel punchings, etc.
- e.g. NIST reactor biological shield (ρ ~3.6 gcm⁻³ ~ 2.2m thick)

- Steel shot/paraffin wax (SSW) NCNR uses steel weldments (typically 1ft thick) filled with SSW. Very effective for combined fast neutron/ gamma fields (sometimes weldments filled only with wax or even empty ~ physical barrier/protection)
- Most sky blue shielding you see in NCNR guide hall

Guide shielding basics Approximate cost steel shot/wax (SSW) shielding

- Approx \$4.25/lb filled
- Sost/ft standard 1ft thick SSW shield \approx \$19829 = **\$65/mm** (quite alot!)
- I standard 4' long section (2 sides + 1 roof) ≈\$80K (~19000 lbs, 8.5 tonnes) (1 standard side ≈ \$32K, 1 standard roof ≈\$16K)

Steel shielding

- Usually when only gamma shielding is a concern e.g. end of NGC (also good for inelastic scattering of fast neutrons)
- Steel collimation "tub" shield (NGA-D) to limit radiation streaming into guide hall

Polyethylene: May use poly sheets on inside of shield near fast neutron scattering sources (e.g. crystal filters) but not near very strong gamma sources. At NCNR have had poly bricks very close to the reactor face crumble to dust (breaking of polymer chains). Most resistant plastics show change of elastic properties at < 10¹⁰ rads (10⁸ Gy = 10⁵ J/g), least resistant (e.g. Teflon) may fail at 10⁶ rads (10⁴ Gy)

Polyethylene sheets on inside of guide shields in reactor hall C100

Polyethylene stack near C100 north wall

~20rem (0.2Sv) neutrons at C100 north wall if unshielded

Lead (Pb) - (ρ~11.3 gcm⁻³)

- Good gamma shield, used near gamma hotspots created by neutron capture in beamline elements etc.
- Avoid direct exposure to neutrons (e.g. in beam shutters) radioactive and chemically toxic – mixed waste – may justify use of W instead
- Pb poor attenuator of thermal neutrons
- Tungsten (W) (ρ~19.3 gcm⁻³)
 - Very effective gamma shield
 - Combined with hydrogenous material (e.g. polyethylene) is effective high energy (> 1 MeV) neutron moderator because of W inelastic scattering cross-section
 - Disadvantage:
 - Expense and difficult to machine (less expensive and less dense variants are available– Tungsten Hevimet ($\rho \sim 17 - 18 \text{ gcm}^{-3}$), and compressed W shavings ($\rho > \sim$ that of Pb))
 - Secomes β radioactive when exposed to neutrons

Guide shielding basics

Miscellaneous issues

- Mechanical stability (C.G.) etc. very important in shield design. Credible seismic events are now considered in shield designs in most neutron scattering facilities
- Avoid very strong source of gammas on SSW (gamma heating in steel and poor heat exchange can transition wax through M.P. (~60C) with ~10% volume increase!)

Guide shielding basics

Questions?

