

ISNIE

AN INTRODUCTION TO NEUTRON GUIDE OPTICS

Jeremy Cook

Physicist, Research Facility Operations Group NIST Center for Neutron Research

NEUTRON GUIDE OPTICS OUTLINE

- What are neutron guides and what do they do?
- Neutron optical properties
- Neutron reflective coatings
- Neutron guide substrates
- Neutron guide geometries and performance
- Transmission mirror devices
- Polarizing devices
- Windows, misalignments, cost estimates

NEUTRON GUIDE OPTICS WHAT DO NEUTRON GUIDES DO?

 Instruments physically large (often displaced radially 10's m from source), samples ~ few cm in size – neutron guides concentrate the neutron beam enhancing neutron flux (ns/unit area) at sample

NEUTRON GUIDE OPTICS WHAT DO NEUTRON GUIDES DO?

NEUTRON GUIDE OPTICS How?

- Neutrons are uncharged cannot redirect them easily like a charged particle beam
- BUT neutrons DO have <u>spin</u> a <u>magnetic moment</u>
 - Trajectory can be changed by *non-uniform* magnetic field (*refractive* optics).
 - Hexapole magnetic focusing devices exist but one neutron spin state is focused, the other is defocused
- Neutron guides use <u>reflective</u> optics

NEUTRON GUIDE OPTICS WAVE-LIKE PROPERTIES OF NEUTRONS

- Wavelengths of thermal-cold neutrons typically several Angstroms Å [1Å = 0.1 nm]
- Atomic spacings typically several Å (e.g. NaCl has nearest Na-Cl separation 2.8 Å)

NEUTRON GUIDE OPTICS WAVE-LIKE PROPERTIES OF NEUTRONS

• Wavelength λ of neutron

h=Planck's constant, m_n =mass of neutron, v_n =velocity of neutron

Neutron energy

$$E_{n} [\text{meV}] = \frac{81.804207}{\left(\lambda \begin{bmatrix} \circ \\ A \end{bmatrix}\right)^{2}} \qquad \qquad v_{n} [\text{ms}^{-1}] = \frac{3956.034}{\lambda \begin{bmatrix} \circ \\ A \end{bmatrix}}$$

Neutron cross-sections usually quoted at $\underline{v_n}=2200 \text{ ms}^{-1}$ ($E_n=25.3 \text{ meV}$, $\lambda = 1.7982$ Å)

$$E_n = \frac{1}{2} m_n v_n^2$$

 $\lambda = \frac{h}{m}$

 $m_n v_n$

NEUTRON GUIDE OPTICS WAVE-LIKE PROPERTIES OF NEUTRONS

λ [Å]	Energy	Velocity [ms ⁻¹]	
10-4	8.18 MeV	3.956×10^{7}	
10 -3	81.8 keV	3.956×10^{6}	
10-2	0.818 keV	3.956×10 ⁵	
0.1	8.180 eV	39560.34	
0.5	327.22 meV	7912	
1	81.804 meV	3956	
1.7982	25.299 meV	2200	
2	20.451 meV	1978	
4	5.113 meV	989.0	
5	3.272 meV	791.2	
6	2.272 meV	659.3	
9	1.010 meV	439.6	

OPTICS OF NEUTRONS

NEUTRON GUIDE OPTICS REFRACTION AND TOTAL REFLECTION OF NEUTRONS

 Neutron has wave-like properties: Can assign a refractive index, n, for their passage through a medium (ignoring absorption usually ok)

$$n \approx 1 - \lambda^2 \frac{Nb}{2\pi}$$

Nb = "scattering length density" of medium

- n=1 for vacuum, also for air, He (to good approx.)
- *n very slightly less than 1* for dense media $(1 n \approx 10^{-6})$

NEUTRON GUIDE OPTICS REFRACTION AND TOTAL REFLECTION OF NEUTRONS

• Transition from refraction to *total reflection* occurs when: and $\theta = 0$ ($\cos \theta = 1$) $\theta = \theta$

Neutron Research

TSNTF

 Total (external) reflection occurs on going from less dense (vacuum) to more dense (mirror) interface

Drop "med" subscript for neutron guides:

- Dealing with n=1 for vacuum/He/air
- n (and N,b) henceforth refer to the dense medium (reflective coating)

• 1- *n* very small ($\approx 10^{-6}$) \Rightarrow *small angle approximation* applies:

$$\cos \theta_c \approx 1 - \frac{\theta_c^2}{2} = n = 1 - \lambda^2 \frac{Nb}{2\pi} \qquad \Rightarrow \frac{\theta_c}{\lambda} \approx \sqrt{\frac{Nb}{\pi}}$$
$$\theta_c(\lambda) \propto \lambda$$

• In 2-dimensions: Solid angle ~ $\theta_{c,x}(\lambda)\theta_{c,y}(\lambda)$

:: (idealized) solid angle of acceptance of guide ~ λ^2

(guide naturally filters out fast neutrons)

NEUTRON GUIDE OPTICS REFLECTIVITY

Fresnel's law reflectivity

$$R(\theta < \theta_{c}) = 1$$

$$R(\theta \ge \theta_{c}) = \left| \frac{\sin \theta_{1} - (n^{2} - \cos^{2} \theta_{1})^{\frac{1}{2}}}{\sin \theta_{1} + (n^{2} - \cos^{2} \theta_{1})^{\frac{1}{2}}} \right|^{2} = \left| \frac{\sin \theta_{1} - (\cos^{2} \theta_{c} - \cos^{2} \theta_{1})^{\frac{1}{2}}}{\sin \theta_{1} + (\cos^{2} \theta_{c} - \cos^{2} \theta_{1})^{\frac{1}{2}}} \right|^{2}$$

 Often plot reflectivity against wavevector transfer Q

$$Q = \frac{4\pi}{\lambda} \sin \theta \quad \approx 4\pi \frac{\theta}{\lambda}$$

• Note *critical Q* is

$$Q_c \approx 4\pi \frac{\theta_c}{\lambda} = 4\sqrt{\pi Nb}$$

NEUTRON GUIDE OPTICS REFLECTIVITY LIMITS AND CRITICAL ANGLE

Largest critical angle for largest scattering length density Nb

Material	N or (N) (×10 ²² cm ⁻ ³)	b or 〈b〉 (fm)	Nb or S _i N _i b _i (×10 ⁻⁶ Ų)	"m"≡q _c /q _c (nat Ni)
Be	12.34	7.79	9.61	1.01
Fe	8.48	9.45	8.01	0.92
Ni (reference)	9.13	10.3(1)	9.41	1.00
⁵⁸ Ni	9.11	14.4(1)	13.1	1.18
Cu	8.49	7.72	6.55	0.83
Borkron® NZK7 glass	7.36	5.26	3.87	0.64

- Largest θ_c in *naturally-occurring* elements (except Be which is not practical) is for **Ni** (⁵⁸Ni isotope is larger)
- $\theta_c(\text{nat Ni})/\lambda = 1.73 \text{ mrads } \text{\AA}^{-1} (\approx 0.1^{\circ} \text{\AA}^{-1})$
- $\theta_c({}^{58}\text{Ni})/\lambda = 2.04 \text{ mrads } \text{\AA}^{-1} (\approx 0.12^{\circ} \text{\AA}^{-1})$
- $heta_c$ for guides usually referenced to nat. Ni via factor "m"

 $\frac{\theta_c}{\lambda} \approx 1$

|Nb

NEUTRON GUIDE OPTICS DEFINITIONS: "FULLY-ILLUMINATED"

- "Fully-illuminated" ⇒ What can be accepted by the guide is not limited by the boundaries of the source: Think "infinite source"
- Usually wish to fully-illuminate to reasonably long wavelength or for max acceptable beam divergence

NEUTRON GUIDE OPTICS DEFINITIONS: "LONG" STRAIGHT GUIDES

"Long" guide $(\theta_c(\lambda) > W/L)$ - divergence at exit $\pm \theta_c(\lambda)$ if fully-illuminated

NEUTRON GUIDE OPTICS SIMPLE EXAMPLE "LONG" STRAIGHT GUIDE

Center for

Neutron Research

 First guides at NCNR (CNRF) early 1990's were straightsided and not curved

- IDEALIZED transmission ~ $\theta_c^2 \propto \lambda^2$
- NG3,5,6,7 are ⁵⁸Ni, $\theta_c({}^{58}\text{Ni})/\theta_c(\text{Ni}) = 1.18 \Rightarrow \text{ideal gain } {}^{58}\text{Ni}/\text{Ni} = 1.18^2 \approx 1.4$
- Flux gain is at the expense of <u>increased divergence</u>

NEUTRON GUIDE OPTICS EXTEND THE LIMITS OF CRITICAL ANGLE?

- Fresnel's law reflectivity
 - Very high reflectivity below θ_c
 - θ_c is fundamentally limited by
 physical and nuclear properties
 of material

- Can we somehow increase the naturally-limited critical angle by factor *m*?
 - e.g. $m=2 \implies$ idealized gain wrt Ni $=m^2 = 4$
 - m=3, gain=9 etc.
- Yes! Can do this artificially with *supermirrors*

SUPER MIRRORS

NEUTRON GUIDE OPTICS ARTIFICIALLY EXTENDING THE LIMITS OF CRITICAL ANGLE

Mezei's Supermirror Design Recipe

$$d(n) = \frac{d_c^{Ni}}{\sqrt[4]{n}}$$

- Alternating layers of "**high contrast**" materials
- e.g. Ni (Nb=9.41×10⁻⁶ Å⁻²) and Ti (Nb=-1.91×10⁻⁶ Å⁻²)

- Relies on coherent (in-phase) neutron scattering from different layers
 - Each d-spacing reflects a different Q (different angle for a given wavelength or different wavelength for a given angle)

Figure from C. Rehm

Neutron Research

- d_i are chosen such that the corresponding Bragg peaks intersect at half-height
- "m" defines the ratio of the effective supermirror reflectivity cutoff wrt nat. Ni (e.g. m=3 ⇒ Q_c(SM)/Q_c(Ni)=3)

ISNIE

ISNIE

- 5 # of Bilayers $\sim 4 \times m^4$ 4 3 ш 2 (600 800 200 400 1000 0 # of Ni/Ti Bilayers
- Number of required layers increases rapidly with increasing $m(\sim m^4)$ influences cost

- Thickness of supermirror increases $\sim m^3$

Center for

Neutron Research

O COATING TYPES

NEUTRON GUIDE OPTICS TYPES OF SUPERMIRROR

- Common (non-polarizing guides): Ni-Ti
- Polarizing
 - Fe/Si
 - FeCoV / TiN (problem activation of Co (60 Co T_{1/2}>5 yrs)
 - Require > 100 Gauss (0.01 T) magnetic field in "easy magnetization direction" (plane of supermirror) to saturate polarization
- Non-magnetic Ni(Mo)/Ti (special applications)

SUPERMIRROR COATINGS

SUPERMIRROR COATINGS

POLARIZING SUPERMIRROR COATINGS

NEUTRON GUIDE OPTICS SUPERMIRRORS

- NCNR guides 3, 5, 6, 7 are currently ⁵⁸Ni
 - will be upgraded with supermirror guides (5,6), 7 (m=2 through confinement)
 - curved (6)
 - bi-elliptical (5)

CUIDE LOSSES

- Reflectivity of all coatings < 1 because of imperfections
 - Surface roughness has to be on Å scale (leads to off-specular reflections)
 - Effect can be approximated by factor $\exp(-Q^2 \langle u^2 \rangle)$ where $\langle u^2 \rangle$ is the mean squared roughness
 - Controlling roughness particularly important for **high** *m* supermirrors (large *Q*)
 - Interdiffusion of layers (supermirrors)
 - Absorption of neutrons in reflecting layers
 - Surface roughness and interdiffusion are significantly improved by "reactive sputtering"
 - ex. For Ni-Ti supermirrors Ni layer is deposited in a partial pressure of air or carbon is added

• Example of effect of surface roughness at Q=Q(m=3)=0.0652Å

- Other sources of losses in guides
 - Misalignments (angular and spatial)
 - Waviness of substrates (long-range undulations of substrate surface redirects neutron away from intended direction)
 - (Often ~ 0.1 mrad level of angular precision required for the above)
 - Intrinsic manufacturing imprecision (e.g. cross-section ~±0.01 mm, degree of parallelism etc., substrates are selected for low waviness)
 - Oxidation, overheating of mirrors/ supermirrors
 - Poor vacuum
- Reflectivity losses can be very large when a large number of reflections, n_r , are required for transmission $T \sim R^{n_r}$
- Redirection of neutron trajectory also blows up with increasing n_r etc.

 $Q \approx 4\pi \frac{\theta}{\lambda}$

SUBSTRATES

NEUTRON GUIDE OPTICS TYPES OF SUBSTRATE

- ~ Å (0.1 nm) level roughness required
- Borated glass (usually bonded with radiation-resistant epoxy)
 - Borkron NZK7 and NBK optical glass superpolished (more resistant to high flux neutron irradiation than borofloat)
 - Borofloat floated on molten metal
 - Embrittlement due to ¹⁰B(n,α)⁷Li reaction (charged particle track displaces atoms in glass structure (cascades))
 - Thermal neutron beam cannot escape the guide, easily-shielded gamma radiation
- Non-borated glass
 - e.g. soda-lime float glass: No α -related embrittlement but higher energy gamma spectrum from e.g. Na, Si, may be some neutron transmission near source
- Silicon
 - Produces hard gammas but can be made thin
 - Thin substrates can be bent on a figure (e.g. elliptical or other forms)
- Metallic (very low roughness ~1Å rms now available)
 - Aluminum (produces hard gamma spectrum more shielding challenges than borated substrates) good heat conduction and radiation heat removal in very high flux
 - Copper, steel (can also shield gammas from supermirror inside)
 - Possibility to weld Al without significant distortion (we are told)

- Borkron (NZK7 or NBK7)
 - Should not exceed ~10¹⁷ cm⁻² lifetime neutron fluence embrittlement from (n, α) reaction
 - First Borkron NIST guides outside of inpile have been known to break under their own weight when removed
 - Must protect exposed ends of guides (borated Al mask) even 10's of m from source (risk of implosion for evacuated guides)

Borofloat

- Appears to have significantly shorter lifetime wrt n irradiation than Borkron 1-2 orders of magnitude (cannot use close to source)
- Must protect exposed ends of guides (borated Al mask) even 10's of m from source (risk of implosion for evacuated guides)

- Soda Lime float glass (boron-free)
 - Used on first in-pile guides at NIST
 - Does not suffer from embrittlement from ${}^{10}B(n,\alpha)^{7}Li$ reaction
 - Epoxy in highest radiation estimated exceed lifetime (radiation damage) fears of in-pile collapse after 2011 mag 5.8 earthquake near Richmond VA!

- Estimate in first ex-pile element based on 10⁹ rad lifetime
- Float glass NG1-4 in-pile epoxy should be totally shot!

- Aluminum

- Material selected for all new in-pile (non-evacuated) guides at NIST
- Indefinite substrate lifetime
- Much lower risk of breakage than glass (future CTW ex-pile monolith sections will be Al)
- Very low roughness

O TYPES OF GUIDE

NEUTRON GUIDE OPTICS COMMON TYPES OF GUIDE

Straight

- Direct line of sight to the source
- Often require cooled crystal filters to eliminate fast neutron and gamma beam contamination
- Curved (eliminate line of sight to source lower beam contamination)
 - Often polygonal approximation to circular arc, non-uniform spatial-angular distribution at exit
 - Curved-straight (improves spatial-angular uniformity of beam)
 - "Phase Space Tailoring" guide variant of curved-straight: Can produce almost perfect beam uniformity above a given wavelength (NGBl and NGBu SANS at NCNR)

Other line-of-sight elimination

- "Optical filter" designs (e.g. NG-4)
- **Profiled** (focusing/ defocusing) parabolic, elliptical, general shape
 - Can be produced on bent silicon substrates if small scale
 - Can use polygonal approximation to profile (e.g. 0.5m linearly tapered sections used for NGC at NCNR)

NEUTRON GUIDE OPTICS STRAIGHT GUIDES

- All original NCNR guides (NG1-7) through confinement are straight
- Unwanted fast neutrons and gammas emitted from the source eliminated by cooled crystal filters
 - e.g. Polycrystalline beryllium strongly scatters $\lambda < 4$ Å neutrons (transmits $\lambda > 4$ Å)
 - Bismuth attenuates gammas but good thermal neutron transmission
 - Also sapphire, quartz, MgO, Si, graphite etc. for fast neutrons
- NG4 & 5 have "optical filters" to eliminate direct lines of sight from the guide exit to the source

NEUTRON GUIDE OPTICS OPTICAL FILTERS (NG4 AND NG5)

"Optical filter" kink eliminates direct line of sight (cold neutrons follow kink, fast neutrons and gammas go straight on and get lost in shielding)

• Avoid direct line of sight with curved guide

- Advantages
 - Reduce fast neutron and gamma contamination
 - W=width of guide, ρ =radius of curvature $L_{LOS} \approx \sqrt{8W\rho}$
 - NGBI W=5cm, ρ =780.6m, $L_{LOS} \approx 17.7$ m
 - Increase separation of instruments: Lateral displacement of guide exit $D = \rho(1 \cos(L/\rho))$
 - If L/ρ small D≈L²/2ρ ⇒ displacement at end of line of sight ≈4W (e.g. NGBl, 20cm at L_{LOS}=17.7m, ≈80cm at 2L_{LOS}=35.3m, ≈1.8m at 3L_{LOS}=53m etc.)
 - Possible to use lower *m* on inner radius than outer radius
- Disadvantages
 - Non-uniform spatial-angular distribution of neutrons at exit (improves with increasing λ)
 - Short wavelength "cutoff" theoretically in limit of $\lambda \rightarrow 0$

ISNIE

Center for

Neutron spatial-angular distributions (no line of sight) 0

Neutron spatial-angular distributions (no line of sight)

• Neutron spatial-angular distributions (no line of sight)

- Neutron spatial-angular distributions (no line of sight)
- If $m_{out} > m_{in}$, λ' exists

 L_{LOS}

Vc

W

 ρ

 $2\psi_c$

W/2

-W/2

X 0

Neutron spatial-angular distributions (no line of sight)

NEUTRON GUIDE OPTICS CURVED GUIDES – EFFECT OF POLYGONAL APPROXIMATION

- Usually use a polygonal approximation for curved guide (straight sections with angular offsets) IE
- Puts jagged edges and holes in acceptance diagram (gets more exaggerated as λ reduces or length of elements increase for a given ρ (bend angle becomes increasing fraction of θ_c)

Example similar to NG-Bl (ρ =781m) with 750mm (bend angle=0.055°) or 250mm elements (bend angle=0.0183°) and λ =1Å, 2Å, or $\lambda = \lambda_c \approx 4$ Å)

NEUTRON GUIDE OPTICS CURVED-STRAIGHT GUIDES

• With fixed *m* coatings improves but does not cure spatial-angular non-uniformity

Neutron guide optics Some tricks: PST guide concept (limited div guides)

EIRP Mar 22-23, 2010

BENDERS

NEUTRON GUIDE OPTICS BENDERS

- Decreasing λ_c increases transmission (reduce W, increase ρ , increase m_{out}) but decreasing $W \Longrightarrow$ more channels, more blanking – find optimum
- Increasing λ_c decreases short wavelength background
- Can also be polarizing

NGA' for NDP

NGA' for NDP

ϕ_{c} (x10 ⁹ cm ⁻² s ⁻¹)		J _c (x10 ¹⁰ /s)
D ₂ NGA'	3.7	7.3
NGA'	1.9	3.7
NG5	2.7	2.4

The NGA' beam will be very cold and very clean (already out of line of sight of feed guide)

NEUTRON GUIDE OPTICS FOCUSING AND PROFILED GUIDES

- Linear taper
 - Most early focusing guides were linearly tapered (can taper in both directions)
 - Focus (max flux) is physically at exit of taper
 - Focusing compresses beam in size (flux increases) but beam divergence increases (unavoidable consequence of Liouville's theorem) – sometimes undesirable
 - Eventually critical angle limits what can be reflected

NEUTRON GUIDE OPTICS FOCUSING AND PROFILED GUIDES

Elliptical, parabolic, general form, etc.

- Elliptical: foci can be beyond guide exit
- Ellipse: Can think of "focusing on source and/or sample"
- Ellipse with point source at one focus transmits with (at most) 1 reflection to sample placed at other focus
- Unreflected still defocusing (divergence depends on solid angle of direct view)
- Transmission efficiency high because few reflections from source to sample
- Have extended sources and samples ⇒ multiple reflections and possibly structure in source image (often want uniform neutron distributions at sample)

NEUTRON GUIDE OPTICS FOCUSING AND PROFILED GUIDES

Parabolic

- Can think of "focusing on source" (time-reversal)
- With point source at focus converts small divergent source beam into broad parallel beam (reflected component)
- Un-reflected still divergent depending on solid angle of direct view
- Transmission efficiency high because few reflections from source to sample
- Neutron experiments have use extended sources

NEUTRON GUIDE OPTICS ELLIPTICAL GUIDES AT NCNR

- NGC elliptical in vertical plane (increases transmission efficiency), graded m
- 1.Ellipse accepts narrower divergent beam from source
- 2.Converts to wider less divergent beam in the center
 - a) Allows long distances traveled with reduced number of contacts (losses) at the guide walls
 - b)Also permits lower m to be used near center.
- 3.Refocuses beam near exit increasing the flux and reduces the beam size (but divergence increases)

NEUTRON GUIDE OPTICS ELLIPTICAL GUIDES AT NCNR

 NG5 will be bi-elliptical, graded m NG-5 (MegaSPINS)

NEUTRON GUIDE OPTICS Long wavelength cutoff device for candor

- CANDOR instrument at NCNR uses
 ONLY wavelength range between 4 and 6Å
- Wavelengths outside of this range only contribute to instrumental background
- Eliminate $\lambda < 4 \text{\AA}$ very effectively with Be filter
- Want to reduce wavelengths with $\lambda > 6 {\rm \AA}$ with minimal penalty to $\lambda \leq 6 {\rm \AA}$

NEUTRON GUIDE OPTICS X-DEFLECTOR (CANDOR)

SPECIAL DEVICES LONG WAVELENGTH CUTOFF

Special devices Long wavelength cutoff device (perfect R, transmission)

Neutron guide optics Long wavelength cutoff device (imperfect R, transmission)

Neutron guide optics "V"or "X" (may be asymmetric)

Neutron guide optics "V"or "X" (may be asymmetric)

SPECIAL DEVICES POLARIZERS

NEUTRON GUIDE OPTICS POLARIZING DEVICES – POLARIZING GUIDES

Polarizing guide (Fe/Si, FeCoV / TiN supermirror) – typically require several 100 Gauss magnetization field in "easy magnetization direction" (plane of supermirror) to "saturate" magnetization in desired direction

Polarizing guide at FRM2, Munich

NEUTRON GUIDE OPTICS POLARIZING DEVICES – V-POLARIZER

 Polarizing: Fe/Si, FeCoV / TiN (problem activation of Co (⁶⁰Co T_{1/2}>5 yrs) – require few Gauss^E magnetic field in "easy magnetization direction" (plane of supermirror)

NEUTRON GUIDE OPTICS POLARIZING DEVICES – V-POLARIZER ...

R.R. Gainov, F. Mezei, J. Füzi, M. Russina Nuclear Inst. and Methods in Physics Research, A 930 (2019) 42–48

- Because of the small angles required for the V's devices can be long
- May be remedied by placing multiple adjacent shorter V's

NEUTRON GUIDE OPTICS POLARIZING DEVICES – POLARIZING BENDER

Otto Schärpf (ILL 1980's)

Polarizing bender - NIST (2013)

Bender design
 Number of channels: 60
 Path/Profile: truly curved
 Radius of curvature: 11160 mm
 Cross-section: 106 mm(w) x 100 mm (h)
 Length: 402 mm
 Width of channels: 1.37 mm
 Thickness of blades: 0.3 mm
 Coating of blades: Fe/Si, m = 2.5
 Specials

Magnetic casing with B = 450G

NEUTRON GUIDE OPTICS Guide windows

Swiss Neut

- Must have high thermal/cold neutron transmission (low scattering and absorption)
- Most materials have "1/v" absorption (absorption cross-section increases $\propto \lambda$)

$$\sigma_{a}(v_{n}) \approx \sigma_{a,2200} \frac{2200}{v_{n} [\text{ms}^{-1}]} \quad \text{or} \quad \sigma_{a}(\lambda) \approx \sigma_{a,2200} \frac{\lambda [\text{A}]}{1.7982}$$
$$T = \exp(-\Sigma_{a}t), \qquad \Sigma_{a} = \sum_{i} N_{i} \sigma_{a,i}$$

• Usually assume that *any* scattering loses neutron from the beam so

$$T \approx \exp(-\Sigma_t t), \qquad \Sigma_t = \sum_i N_i \left(\sigma_{a,i} + \sigma_{s,i}\right)$$

ш

NEUTRON GUIDE OPTICS GUIDE WINDOWS

Windows are "thin" (exponent is small) so

 $T \approx \exp\left(-\Sigma_t t\right) \quad \approx 1 - \Sigma_t t$

- This means that the absorption probability $\approx \Sigma_a t$, so prompt gamma production and activation rate $\propto t\lambda$ (minimize t!)
- Common materials for guide windows Al (Al6061-T6), Mg (AZ31B 3% Al, 1% Zn), Be
- Note neutron activation of Al, ²⁸Al $T_{1/2}$ =2.3 minutes
 - Saturation activity is reached after a few minutes of irradiation
 - Should wait at least 20 minutes before approach after beam off

MISALGNMENT

NEUTRON GUIDE OPTICS EFFECTS OF MISALIGNMENTS

- Spatial misalignments
 - Lose transmittable area of beam
 - Steps can block non-negligible preceding reflecting surface due to small reflection angles
- Angular misalignments
 - Can be cumulative increasing error of intended trajectory
 - Cause additional trajectories to exceed critical angle
- Causes
 - Manufacturing defects machining, measurement accuracy limitations (also substrate waviness, parallelism)
 - Installation errors
 - Building settlement
- Effects of both types of misalignment tend to decrease with increasing wavelength (e.g. for instance if angular offset « critical angle) BUT longer wavelengths tend to reflect more on the average (depends on design)
- Effects can be estimated in simulations

BONUS Costing Approximations

NEUTRON GUIDE OPTICS (VERY) APPROXIMATE GUIDE COSTS!

- "Home-made" algorithm based on purchased guide data and some guesses (zero knowledge of proprietary cost algorithms!)
- Over-dependence fraught with danger (many variables, including load and market constraints which are NOT factored in)
- For rough initial budget estimates only only for standard or simple tapered elements
- I will deny all knowledge of this in cases of failure!

Glass cost,

$$C_{glass} = C_{fixed} + L(m) \left(C_l + C_{pol} \max \left[w_{ent} (cm), w_{ex} (cm), h_{ent} (cm), h_{ex} (cm) \right] \right)$$

where $C_{fixed} = 415 , $C_{pol} = $656 \text{m}^{-1} \text{cm}^{-1}$ (polishing) and

- 1 Non-tapered or singly tapered
- $C_l = 7963
- 2 Doubly-tapered

$$C_l = $9555$$

Supermirror/coating cost for side i

$$C_{coat,i} = C_{m,i} A_i \left(m^2 \right)$$

where

$$C_{m,i} = \begin{cases} \$1700m^{2.9} & \text{SM} \\ \$1700 & \text{Nat Ni} \\ \$5806 & {}^{58}\text{Ni} \end{cases}$$

Acknowledgements

All of my RFO colleagues, Dan Neumann (NCNR) for some figures and slides, Cristine Rehm (some figures), Chuck Majkrzak ...